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ABSTRACT
Federated learning (FL) is a distributed optimization paradigm that

learns from data samples distributed across a number of clients.

Adaptive client selection that is cognizant of the training progress

of clients has become a major trend to improve FL efficiency but

not yet well-understood. Most existing FL methods such as FedAvg
and its state-of-the-art variants implicitly assume that all learning

phases during the FL training process are equally important. Un-

fortunately, this assumption has been revealed to be invalid due to

recent findings on critical learning periods (CLP), in which small

gradient errors may lead to an irrecoverable deficiency on final

test accuracy. In this paper, we develop CriticalFL, a CLP aug-

mented FL framework to reveal that adaptively augmenting exiting

FL methods with CLP, the resultant performance is significantly

improved when the client selection is guided by the discovered

CLP. Experiments based on various machine learning models and

datasets validate that the proposed CriticalFL framework consis-

tently achieves an improved model accuracy while maintains better

communication efficiency as compared to state-of-the-art methods,

demonstrating a promising and easily adopted method for tackling

the heterogeneity of FL training.
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Figure 1: (a) An intuitive example of CLP. (b) The final accu-
racy achieved by ResNet-18 on both IID and Non-IID CIFAR-
10 with FedAvg for training as a function of recover round,
before which only partial datasets are used [52].

1 INTRODUCTION
Federated learning (FL) [32] has emerged as an attractive distributed

learning paradigm that leverages a large number of clients to collab-

oratively learn a joint model with decentralized training data under

the coordination of a centralized server. In contrast with centralized

learning, the FL architecture allows for preserving clients’ privacy

and reducing the communication burden caused by transmitting

data to the server. While there is a rich literature in distributed opti-

mization in the context of machine learning, FL distinguishes itself

from traditional distributed optimization in two key challenges:

high degrees of statistical and system heterogeneity [13, 14, 18].

Limitations of Existing Methods. In an attempt to address the

heterogeneity and improve the efficiency of FL, various optimiza-

tion methods have been developed for FL. In particular, the feder-

ated averaging algorithm (FedAvg) [32] is the first state-of-the-art
method for FL. In each communication round, FedAvg leverages

local computation at each client and employs a centralized server

to aggregate and update the global model parameter. While FedAvg
has demonstrated empirical success in heterogeneous settings, it

fails to fully address the underlying challenges associated with het-

erogeneity. For example, FedAvg randomly selects a subset of clients

in each round regardless of their statistical heterogeneity, which

diverge empirically in settings where data samples of each client

follow a non-identical and independent distribution (non-IID).

Critical Learning Periods in FL. A recent trend of improving FL

efficiency focuses on adaptive client selection during the FL train-

ing process, such as [5, 19, 25, 26, 38, 39, 43, 44, 47]. However, these

studies implicitly assume that all learning phases during the FL

training process are equally important. Unfortunately, this assump-

tion has recently been revealed to be invalid due to the existence
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of critical learning periods (CLP), i.e., the final quality of a deep neu-

ral network (DNN) model is determined by the first few training

epochs, in which deficits such as low quality or quantity of training

data will cause irreversible model degradation, as illustrated in Fig-

ure 1(a). Notably, this phenomenon was revealed in the latest series

of works in centralized learning [2, 8, 15, 16], and in FL [52, 54],

which validated that if there is no sufficient training data at as early

as the 20th communication round, the final test accuracy of FL is

severely degraded compared to the standard FedAvg, as presented
in Figure 1(b). Despite their insightful findings, there remains to

be a major gap between the observation of CLP in FL and the goal

of more efficient training and improved model accuracy, since exist-
ing client selection methods in state-of-the-art FL algorithms are

agnostic of the existence of CLP in FL, which were only identified

using a computationally expensive metric that emerges after the

full training process in [52].

CLPAugmented Client Selection for Efficient FL. In this paper,

we close this gap by demonstrating the importance of augmenting
client selection with CLP in state-of-the-art FL algorithms. Through

a range of carefully designed experiments on different machine

learning models and datasets, we observe a consistently improved

model accuracy without sacrificing communication efficiency by

augmenting state-of-the-art FL algorithms with CLP. We build upon

recent work by [52], who showed that if the training dataset for each

client is not recovered to the entire training dataset early enough in

the training process, the test accuracy of FL is permanently impaired

(see Figure 1(b)). We extend this notation to client selection in FL

and show that a larger number of clients are only required during

the CLP. As a result, an adaptive and efficient client selection scheme

is akin to finding CLP in the FL training process. These CLP can be

detected in an online manner using a new metric called Federated

Gradient Norm (FGN). To the best of our knowledge, this is the first

step taken towards exploiting CLP for adaptive client selection for

efficient FL to mitigate heterogeneity.

Main Contributions: We summarize our contributions:

• EfficientMetric for CLPDetection.Wepropose a practical,

easy-to-compute Federated Gradient Norm (FGN) metric to

identify CLP in an online manner, fixing a major paradox

for connecting CLP with client selection for the efficient FL

training goal.

• Improved Model Accuracy and Communication Effi-
ciency.We propose a simple but powerful CLP augmented

FL framework, dubbed as CriticalFL, that is generic across
and orthogonal to different FL methods. In particular, we

use FedAvg as our building block since it is the first and the

most widely used one. CriticalFL inspects the changes in

FGN to detect CLP in FL training process, and adaptively

determines the number of clients to participate in each FL

training round. With extensive empirical evaluation on dif-

ferent machine learning models with different datasets, we

show that CriticalFL consistently achieves up to 9% accu-

racy improvement while maintaining better communication

efficiency compared to FedAvg.
• Generalization.We show that CLP awareness can be easily

combined with state-of-the-art FL methods, such as FedProx
[26], VRL-SGD [28], FedNova [47], FedAdagrad, FedYogi, and

Algorithm 1 FedAvg

Input:M, η, E, θ (0), T

1: for t = 0, 1, · · · ,T − 1 do
2: Server selects a subsetM(t ) ofM clients at random
3: Server sends θ (t ) to all selected clients

4: Client k ∈ M(t ) updates θ (t ) via E iterations of SGD on Dk
with stepsize η to obtain θ (t+1)k

5: Each selected client k ∈ M(t ) sends θ (t+1)k back to the server

6: Server aggregates the θ ’s as θ (t+1) :=∑
k ∈M(t )

Nk∑
k∈M(t ) Nk

θ (t+1)k
7: end for

FedAdam [36]. When augmented by CriticalFL via manip-

ulating the client selection, existing methods achieve up to

8%, 9%, 9%, 10%, 11%, and 11% accuracy improvement, respec-

tively, compared to training without being CLP augmented.

2 RELATEDWORK AND BACKGROUND
Critical Learning Periods (CLP). The presence of CLP in central-

ized neural network training was first highlighted in [2, 16]. Some

other works [7, 8, 15, 17] have also highlighted the importance

of early training phase in centralized learning. The existence of

CLP in FL was recently discovered in [52]. In particular, they setup

experiments where only partial datasets are available for the first

few communication rounds and then continue training the model

with entire training datasets for the rest of communication rounds.

Surprisingly, the FL model trained in this way showed a permanent

impaired test accuracy performance nomatter howmany additional

training rounds are performed after CLP, as illustrated in Figure 1(b).
However, studying CLP phenomena in FL [52] hinged on costly in-

formation metric (e.g., eigenvalues of the Hessian) that emerges

after the full training, limiting their practical benefits. We differ

from [52] by developing an easy-to-compute metric to identify CLP
during the training process in an online manner.

Federated Optimization Setting. Consider the federated archi-

tecture where M clients jointly solve the optimization problem:

minθ ∈Rd F (θ ) :=
∑M
k=1 pkFk (θ ), where pk = Nk/N represents the

relative sample size, and Fk (θ ) =
1

Nk

∑
ξ ∈Dk

ℓk (θ ; ξ ) is the local

objective function at the k-th client. Here ℓk denotes the loss func-

tion defined by the learning model, ξ represents a data sample from

local dataset Dk , andM denotes the set of clients.

Federated Learning and Client Selection. FedAvg [32] is the

first to solve the above optimization problem through aggregat-

ing the locally trained models at the central server at the end of

each communication round, and has sparked many follow-ups

[5, 6, 12, 19–21, 26, 27, 31, 34, 36, 37, 39, 41–44, 47, 49, 51, 55]. For a

comprehensive introduction to FL and other algorithmic variants in

FL, we refer interested readers to [18]. Although the performance

of FedAvg has been improved in both theory and practice by re-

cent literature such as FedProx [26], FedNova [47], SCAFFOLD

[19], VRL-SGD [28], FedBoost [10], FedMA [44], FetchSGD [38] and

FedOPT [36], FedAvg is the first and the most widely used one. As
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Figure 2: Detecting CLP using FGN with δ = 0.01 and Fed-
FIM, where the shade and double-arrows indicate identified
CLP. The results are conducted using AlexNet on (a) CIFAR-
10 (top) and (b) Fashion-MNIST (bottom) datasets, which are
non-IID partitioned across 128 clients using Dirichlet distri-
butions Dir128(0.1), Dir128(0.2), and Dir128(0.3), respectively.

a result, we see FedAvg as our basic block. Specifically, at the ini-
tial step, the central server in FedAvg randomly initializes a global

model θ (0). At each round, a fixed number of randomly selected

clients run E iterations of local solver, e.g., the stochastic gradient

descent (SGD) [45, 46, 56], and then the resulting model updates are

averaged. The details of FedAvg are summarized in Algorithm 1,

whereM(t ) ⊆ M andm := |M(t ) | ≤ M , ∀t .
Unlike most of aforementioned works that are agnostic to the

existence of CLP, we design a novel CLP augmented FL framework.

Importantly, we remark that our proposed CLP augmented FL frame-
work, CriticalFL is orthogonal to and can be easily combined with
these methods (see Section 4), since CriticalFL merely augments

a state-of-the-art FL method to adaptively determine the number

of clients that participate in each FL training round, rather than

changing the way how the FL method selects clients. Moreover,

CriticalFL is also compatible with and complementary to other

techniques such as gradient compression/quantization [4, 9].

3 CRITICALFL FRAMEWORK
As motivated by aforementioned works, it is clear that finding an

adaptive client selection scheme is akin to finding CLP in FL training
process. To this end, we begin with how to efficiently detect CLP that
lay out the rationale behind our framework. The rest of this section

focuses on our proposed CriticalFL framework that augments

client selection in state-of-the-art methods with CLP.

3.1 Detecting Critical Learning Periods
Prior works use the changes in eigenvalues of the Hessian or approx-

imating the Hessian using (federated) Fisher information [2, 16, 52]

as an indicator to detect CLP, which is computationally expensive

(see Figure 3), and hence hard to be leveraged into client selection

in an online manner. We deviate from these works and develop an

approach based on federated gradient norm (FGN), which can be

efficiently computed.

Specifically, we consider the difference in training loss for an

individual data sample ξ and let д(θ ; ξ ) = ∂
∂θ ℓ(θ ; ξ ) denote the
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Figure 3: Computation time and memory consumption of
FGN and FedFIM approaches to detect CLP.

gradient of the loss function evaluated on ξ . After performing a step

SGD on this sample, the training loss ∆ℓ = ℓ(θ−ηд(θ ; ξ ); ξ )−ℓ(θ ; ξ )
can be approximated by its gradient norm using Taylor expansion,

i.e., ∆ℓ ≈ −η∥д(θ ; ξ )∥2. As a result, the overall training loss at the
t-th round, which we define as the FGN, can be approximated using

the weighted average of training loss across all selected clients, i.e.,

FGN(t) =
∑

k ∈M(t )

Nk∑
k ∈M(t ) Nk

∆ℓ
(t )
k . (1)

Then we develop a simple threshold-based rule to detect CLP based

on FGN as follows: if

FGN(t) − FGN(t − 1)

FGN(t − 1)
≥ δ , (2)

then round t is in CLP, where δ is the threshold used to declare CLP.
Experimental Validation. We compare the CLP identified by

our FGN approach with the federated Fisher information (FedFIM)

approach in [52]. From Figure 2, we observe that these two ap-

proaches yield similar results, but our FGN approach is much more

computationally efficient (being orders of magnitude faster to com-

pute). For example, the computation time andmemory consumption

of FGN and FedFIM under the same settings (in PyTorch [33] on

Python 3 with three NVIDIA RTX A6000 GPUs, 48GB with 128GB

RAM) are presented in Figure 3, where C+A, C+V, F+A, F+V and

C+R represent AlexNet on CIFAR-10, VGG-11 on CIFAR-10, AlexNet

on Fashion-MNIST, VGG-11 on Fashion-MNIST, and ResNet-18 on

CIFAR-100, respectively. Hence our method can be easily leveraged

for client selection during the training process in an online manner.

More discussions on the robustness of our method can be found in

[53].

3.2 The Design of CriticalFL Framework
We now describe CriticalFL, our proposed framework that adap-

tively determines the number of selected clients for FL training

by leveraging identified CLP. Again, we use FedAvg as the build-

ing block, and our framework can be easily combined with other

existing methods, which we will illustrate in Section 4.

Per our discussions on CLP, the final model accuracy is perma-

nently impaired if not enough clients are involved in CLP no matter

how much additional training is performed after CLP [52]. Thus,

CriticalFL increases the number of selected clients of FedAvg
from n0 to 2n0, implying that more clients now participate in im-

proving the global model in the next round during CLP. Using the
model learned from the previous round θn0

as the initial model,

the 2n0 selected clients employ FedAvg and continue the learning
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procedure to reach a global model θ2n0
. The procedure of geo-

metrically increasing the number of selected clients continues till

the set of selected clients contains all availableM clients when the

communication rounds are still in CLP (lines 5 and 8 in Algorithm 2).

Since more clients are selected during CLP in CriticalFL, this
not only makes the comparison with FedAvg unfair, but also leads

to much more communication between clients and the server. To

this end, we leverage two insights to address these two concerns.

On one hand, CriticalFL starts to gradually decrease the number

of selected clients after CLP (line 12 in Algorithm 2), which is moti-

vated by the fact that the final accuracy of using partial datasets

is similar to that of using all datasets after CLP [52]. This not only
makes the average number of selected clients in each round in

CriticalFL comparable to that of FedAvg, but also improves the

communication efficiency. On the other hand, the selected clients

in CriticalFL only sends L parameters of its updated local model

with the largest gradient derivations to the central server. For sim-

plicity, the indicator of locations in the local updated parameter θk
of client k can be represented asmk , and hence only θk ⊙mk is

shared with the server rather than θk itself (line 6 in Algorithm 2).

This is motivated by the observations that not all parameters are im-

portant in the training process [4, 9, 48], and sparsification method

can be leveraged to further improve the communication efficiency

of CriticalFL.
From a high-level perspective, CriticalFL exploits more clients

in the initial phase of the learning procedure than a fixed number of

clients for FedAvg in each round, to promptly reach a global model

with higher accuracy since the initial learning phase plays a critical

role in FL performance. By doing so, we hypothesize that the SGD is

navigating to the steeper parts of the loss surface of the global model

during CLP since a larger amount of data samples have contributed

to the global model. However, the communication overhead of such

an approach is relatively large since more clients are involved in

FL training in each communication round. By only sharing top

L local parameters of each client with the sever during CLP, and
gradually decreasing the number of selected clients after CLP, the
communication overhead of CriticalFL improves without hurting

the final model accuracy. The key point is that more clients join the

training process in the initial learning phase, and only a smaller

number of clients is needed after CLP. As a result, CriticalFL
consistently improves the model accuracy while maintains better

communication efficiency than FedAvg.

Remark 1. As our proposed CriticalFL provides a general frame-
work to augment client selection with identified CLP in federated
settings, one needs to specify the inner optimization subroutine (e.g.,
lines 2, 4, 7 and 11 in Algorithm 2) to quantify the improvement
of the proposed approach. In particular, we set the subroutine to be
FedAvg in Algorithm 2 since it is the most common algorithm and the
building block of many variants in federated settings. This subroutine
could be any federated learning algorithms (with possible variants),
such as FedProx [26], VRL-SGD [28], FedNova [47], FedAdagrad,
FedYogi, and FedAdam [36], which we will numerically illustrate in
Section 4. In addition, each client in CriticalFL only sends top L
parameters of its updated local model to the server during CLP (line 6
in Algorithm 2). However, CriticalFL is not limited to this, and can
be easily generalized with other sparsification methods.

Algorithm 2 CriticalFL: A CLP Augmented Client Selection

Framework for Efficient Federated Learning

Input:M, η, E, θ (0), T

1: for t = 0, 1, · · · ,T − 1 do
2: Server selects a subsetM(t ) ofM clients at random

3: Server sends θ (t ) to all selected clients

4: Client k ∈ M(t ) update the local model via FedAvg

5: if FGN(t )−FGN(t−1)
FGN(t−1) ≥ δ then

6: Client k ∈ M(t ) sends θ (t+1)k ⊙m(t+1)k to the server

7: Server aggregates the θ ’s as:

θ (t+1) :=
∑
k ∈M(t )

Nk∑
k∈M(t ) Nkm

(t+1)
k

θ (t+1)k ⊙m(t+1)k

8: |M(t+1) | ← min{2|M(t ) |,M} //Double clients in CLP
9: else
10: Client k ∈ M(t ) sends θ (t+1)k to the server

11: Server aggregates local models via FedAvg

12: |M(t+1) | ← max{ 1
2
|M(t ) |, 1

2
m} //Halve clients after CLP

13: end if
14: end for

4 EXPERIMENTS
In this section, we evaluate the performance of our CriticalFL
framework. Our results address the following questions:

• What is the benefit of using our CriticalFL framework

compared to FedAvg in terms of final test accuracy and com-

munication efficiency (Section 4.2)?

• What is the generalization performance of our CriticalFL
frameworkwhen its inner optimization subroutine (e.g., lines

2, 4, 7 and 11 in Algorithm 2) is replaced by other state of

the arts (Section 4.3)?

• How do different hyperparameters impact the performance

of our CriticalFL framework (Section 4.4)?

For sake of readability, some experimental results and details are

relegated to [53].

4.1 Experiment Setup
We consider two tasks: (i) image classification using CIFAR-10

and CIFAR-100 [23], and Fashion-MNIST [50] datasets; and (ii)

next-character prediction on the dataset of The Complete Works
of William Shakespeare (Shakespeare) [32]. We use four represen-

tative DNN models: AlexNet [24] and VGG-11 [40] for CIFAR-10

and Fashion-MNIST, ResNet-18 [11] for CIFAR-100, and a stacked

character-level LSTM language model as in [22, 32] for Shakespeare.

We simulate the non-IID FL scenario by considering a heteroge-

neous partition for which the number of data points and class pro-

portions are unbalanced. In particular, we simulate a heterogeneous

partition intoM clients by sampling pk ∼ DirM (α), where α is the

parameter of the Dirichlet distribution. We choose α = 0.1, 0.2, 0.3

in our experiments as done in [44, 47]. The level of heterogeneity

among local datasets across different clients can be reduced when

α increases. We consider the total number of clients to be 128. The

local learning rate η is initialized as 0.01 and decayed by a constant

factor after each communication round. We set the weight decay to

be 10
−5
. The detection threshold is δ = 0.01 and the number of local
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Dataset

(Model)

Non-IID

Degree

FedAvg FedProx VRL-SGD FedNova FedAdagrad FedYogi FedAdam

Original CLP Original CLP Original CLP Original CLP Original CLP Original CLP Original CLP

CIFAR-10

(AlexNet)

α = 0.1 25.25±0.5 34.66±0.1 27.19±0.5 32.81±0.5 26.45±0.5 35.65±0.5 25.92±0.5 32.81±0.5 26.01±0.5 35.98±0.1 27.03±0.2 36.42±0.5 27.39±0.2 36.84±0.5
α = 0.2 35.74±0.3 38.33±0.5 35.26±0.5 37.85±0.5 35.66±0.5 38.36±0.5 35.91±0.5 38.45±0.4 36.34±0.4 41.79±0.1 36.44±0.1 41.55±0.2 37.08±0.3 42.37±0.5
α = 0.3 38.82±0.1 41.94±0.1 36.72±0.5 40.82±0.5 39.78±0.5 41.93±0.5 38.75±0.5 41.88±0.5 40.61±0.2 43.97±0.1 40.58±0.1 44.98±0.1 40.19±0.3 44.35±0.4

CIFAR-10

(VGG-11)

α = 0.1 25.43±0.1 30.53±0.2 25.97±0.5 31.55±0.5 26.74±0.5 30.79±0.5 25.53±0.5 28.78±0.5 24.75±0.1 32.46±0.2 26.27±0.2 34.30±0.1 27.38±0.3 34.31±0.5
α = 0.2 42.26±0.1 44.22±0.2 40.41±0.5 42.47±0.2 41.56±0.4 44.65±0.2 41.03±0.5 43.46±0.1 43.35±0.1 47.52±0.1 43.87±0.1 49.24±0.1 45.73±0.2 51.05±0.1
α = 0.3 43.43±0.1 46.61±0.1 41.12±0.4 46.32±0.2 43.67±0.1 46.58±0.1 43.86±0.3 48.13±0.1 45.62±0.1 50.16±0.1 45.17±0.1 51.03±0.1 46.99±0.2 52.67±0.1

Fashion

MNIST

(AlexNet)

α = 0.1 47.53±0.5 55.77±0.2 47.53±0.5 55.31±0.5 49.08±0.5 57.14±0.5 49.45±0.5 56.23±0.2 48.68±0.5 57.98±0.2 47.88±0.5 58.12±0.2 48.11±0.3 58.62±0.1
α = 0.2 49.61±0.5 58.45±0.1 50.48±0.5 58.27±0.5 49.12±0.5 57.44±0.3 49.48±0.5 58.27±0.5 49.42±0.2 59.52±0.1 50.76±0.3 59.39±0.5 50.68±0.5 60.73±0.1
α = 0.3 57.75±0.4 62.90±0.1 54.41±0.5 61.11±0.2 56.54±0.5 62.67±0.2 55.80±0.5 62.42±0.3 60.27±0.2 66.31±0.1 60.55±0.4 67.06±0.1 62.07±0.3 66.23±0.1

Fashion

MNIST

(VGG-11)

α = 0.1 51.92±0.5 58.76±0.2 52.36±0.5 63.02±0.5 53.28±0.5 64.18±0.5 50.67±0.5 62.91±0.5 55.92±0.5 64.27±0.2 55.32±0.1 64.09±0.5 55.67±0.5 65.86±0.1
α = 0.2 65.79±0.2 70.96±0.1 65.16±0.5 69.50±0.2 66.95±0.5 70.62±0.1 67.67±0.1 70.23±0.1 69.33±0.1 74.52±0.1 71.03±0.1 75.25±0.1 70.68±0.2 75.89±0.1
α = 0.3 67.77±0.2 72.04±0.1 66.53±0.3 71.91±0.2 68.27±0.4 73.20±0.2 68.26±0.2 72.59±0.1 70.89±0.2 74.32±0.1 72.39±0.2 75.63±0.1 72.81±0.2 75.91±0.1

CIFAR-100

(ResNet-18)

α = 0.1 28.28±0.5 31.18±0.5 27.83±0.5 31.44±0.2 28.57±0.5 32.02±0.3 28.76±0.5 31.79±0.2 29.21±0.5 33.01±0.3 28.94±0.5 33.38±0.4 28.57±0.5 32.50±0.4
α = 0.2 30.71±0.4 32.54±0.4 30.65±0.5 32.44±0.2 30.76±0.5 32.82±0.2 30.82±0.5 33.05±0.2 32.37±0.5 34.35±0.3 32.18±0.5 34.78±0.4 31.85±0.5 34.65±0.3
α = 0.3 31.76±0.5 32.95±0.3 31.77±0.3 33.19±0.1 31.58±0.3 32.96±0.2 31.88±0.3 33.29±0.2 32.78±0.5 35.56±0.4 32.91±0.5 35.74±0.3 32.58±0.5 35.06±0.2

Shakespeare

(LSTM)

α = 0.1 40.92±0.4 44.06±0.3 40.80±0.5 43.35±0.5 40.89±0.5 44.12±0.5 40.98±0.5 44.22±0.4 41.39±0.3 44.89±0.4 41.23±0.4 44.32±0.3 41.45±0.4 44.36±0.3
α = 0.2 43.90±0.5 46.76±0.2 43.73±0.5 46.30±0.4 43.98±0.5 46.94±0.4 43.93±0.4 46.85±0.3 44.45±0.2 46.91±0.1 44.56±0.2 46.77±0.2 44.55±0.2 46.63±0.2
α = 0.3 45.05±0.3 47.62±0.1 44.86±0.3 47.42±0.2 45.02±0.3 47.59±0.2 45.04±0.2 47.79±0.1 45.37±0.1 48.25±0.4 45.42±0.1 47.91±0.1 45.35±0.2 47.82±0.1

Table 1: Final test accuracy of state-of-the-art FL algorithms (the “Original” columns), and the corresponding CLP augmented
method (the “CLP” columns) via our CriticalFL framework using various non-IID partitioned datasets with different models.
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Figure 4: Test accuracy of FedAvg and CriticalFL using (top)
AlexNet and (bottom) VGG-11 on non-IID CIFAR-10.
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Figure 5: Test accuracy of FedAvg and CriticalFL using (top)
AlexNet and (bottom) VGG-11 on non-IID Fashion-MNIST.

training epochs is E = 2. We choose L = 20%. An ablation study is

conducted in Section 4.4 to investigate the impact of these hyper-

parameters. We implement CriticalFL and considered baselines

in PyTorch [33] on Python 3 with three NVIDIA RTX A6000 GPUs.

We run each experiment with three independent trials and report

the mean results. For ease of presentation, we omit the variances

which are observed to be small in the experiments.

4.2 Importance of being CLP Augmented:
CriticalFL vs. FedAvg

In this experiment, we study the performance of CriticalFL with

accuracy and communication efficiency. Our goal is to compare

CriticalFL to FedAvg in terms of the final test accuracy and the

communication efficiency, including the communication costs mea-

sured by the amount of data (i.e., model parameters) transitions

between clients and the central server to achieve the final test ac-

curacy, and the number of communication rounds needed for the

global model to achieve good performance on the test data.

Test Accuracy. The final test accuracy of CriticalFL and FedAvg
on non-IID partitioned datasets with FedAvg selecting 16 clients

in each round are summarized in Table 1 (the two columns corre-

sponding to FedAvg). For ease of readability, we only present the

test accuracy over uplink communication costs on CIFAR-10 and

Fashion-MNIST in shown in Figures 4 and 5, respectively.

Obviously, CriticalFL consistently outperforms FedAvg in all

scenarios with an improved final test accuracy up to 9%. Its ad-

vantage is especially pronounced when the dataset is partitioned

across clients using a Dirichlet distribution with parameter 0.1, i.e.,

the datasets across clients are highly non-IID. Not surprisingly, we

observe the importance of being CLP augmented in training effi-

ciency, which is fully reflected via the test accuracy. For example

in Figures 4(a) and 5(a), CriticalFL exhibits a dramatic accuracy

increase in the early phase of the FL training process. This coincides

with the fact that CriticalFL selects a larger number of clients in

each round in the early phase due to being CLP augmented (lines 5-8

in Algorithm 2). Though the accuracy slightly decreases in a short

period due to the decreased number of selected clients (lines 10-12

in Algorithm 2), the final test accuracy is significantly improved.

Our findings on the importance of being CLP augmented in the FL

training process, e.g., for client selection, seem to be consistent with

recently reported observations that the initial learning phase plays

a key role in determining the outcome of the training process.

Communication Efficiency. The benefit of being CLP augmented

for FL training is further reflected via communication efficiency. In
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Figure 6: Communication costs of FedAvg and CriticalFL to
achieve the final test accuracy reported in Table 1 on non-
IID CIFAR-10.
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Figure 7: Communication costs of FedAvg and CriticalFL to
achieve the final test accuracy reported in Table 1 on non-
IID Fashion-MNIST.

Dataset

(Model)

Non-IID

Degree

FedAvg CriticalFL

CIFAR-10

(AlexNet)

α = 0.1 83 29
α = 0.2 77 41
α = 0.3 71 43

CIFAR-10

(VGG-11)

α = 0.1 77 57
α = 0.2 75 55
α = 0.3 71 43

Fashion

MNIST

(AlexNet)

α = 0.1 43 25
α = 0.2 49 27
α = 0.3 39 26

Fashion

MNIST

(VGG-11)

α = 0.1 49 27
α = 0.2 39 25
α = 0.3 35 24

Table 2: Communication rounds required by FedAvg and
CriticalFL to achieve a targeted accuracy on non-IID
CIFAR-10 and Fashion-MNIST.

particular, we consider the communication costs for CriticalFL
and FedAvg to achieve the final test accuracy reported in Table 1,

as well as the communication rounds required by CriticalFL and

FedAvg to achieve a targeted test accuracy.

In FL settings, the central server sends parameters to selected

clients via the downlink that connects the server and clients, while

clients send updated local model to the server via the corresponding

uplink. We report the corresponding downlink, uplink and overall

communication costs of CriticalFL and FedAvg to achieve the

final test accuracy reported in Table 1 on non-IID CIFAR-10 and

Fashion-MNIST in Figures 6 and 7, respectively. On one hand, we

observe that CriticalFL significantly reduces the uplink communi-

cation costs compared to that of FedAvg. This is due to two intrinsic
design properties in CriticalFL: (i) the selected clients during CLP
only share a subset of parameters of their local updated models

with the server (line 6 in Algorithm 2); and (ii) more clients are

only needed during CLP, and a smaller number of clients are needed

afterwards (lines 5, 8, and 12 in Algorithm 2), in particular, the

average number of clients involved in each round in CriticalFL is
0.95× to 1.02× that of FedAvg for achieving the final test accuracy.

On the other hand, we observe that the downlink communication

costs of CriticalFL is higher than that of FedAvg. This is because
the server sends the full model to selected clients and more clients

are involved in the early phases in CriticalFL. Importantly, in real-

world systems, the bandwidth of uplinks often imposes a tighter

bottleneck than that of downlink, e.g., the average uplink band-

width is less than one fourth of downlink bandwidth [1, 30, 35].

Hence, CriticalFL brings benefits on communication costs com-

pared to FedAvg, especially on the more constrained uplink. More

importantly, CriticalFL reduces the overall communication costs

compared to that of FedAvg by up to 12%.

We further report the communication rounds required by FedAvg
and CriticalFL to achieve any targeted accuracy. Since the final

test accuracy of CriticalFL is higher than that of FedAvg, we set
the targeted accuracy to be the final test accuracy of FedAvg as

reported in Table 1 (or Figures 4 and 5, respectively). Comparisons

on other targeted accuracy can be found in [53]. It is clear from

Table 2 that CriticalFL requires fewer rounds to achieve the same

test accuracy. Again this advantage is pronounced on highly non-

IID data partitions.

4.3 Generalization
As mentioned earlier, our proposed CLP augmented FL framework,

CriticalFL is orthogonal to existing state-of-the-art methods, and

hence can be easily combined with these methods by simply re-

placing the inner optimization subroutine (FedAvg) in Algorithm 2

with the corresponding methods. To this end, we study the gen-

eralization of CriticalFL and consider six state of the arts, i.e.,

FedProx [26], VRL-SGD [28], FedNova [47], as well as FedOPT [36]

with three methods, i.e., FedAdagrad, FedYogi and FedAdam. We

call the corresponding CLP augmented methods as CriticalProx,
CriticalVRL, CriticalNova, CriticalAdagrad, CriticalYogi
and CriticalAdam, respectively. We notice that the performance

of FedProx depends on the hyperparameter µ, i.e., the coefficient as-

sociated with the proximal term of each local objective.We tune this

parameter using grid search and report the best value of µ = 0.01

for AlexNet experiments and µ = 0.001 for all other models.

In Table 1, we present the final test accuracy on non-IID datasets

across 128 clients with FedProx, VRL-SGD, FedNova, FedAdagrad,
FedYogi and FedAdam selecting 16 clients in each round. Due to

space constraints, we only report the test accuracy over commu-

nication rounds on CIFAR-10 in Figure 8. Again, CLP augmented

significantly improves the performance of existing methods, i.e.,

CriticalProx, CriticalVRL, CriticalNova, CriticalAdagrad,
CriticalYogi and CriticalAdam outperform FedProx, VRL-SGD,
FedNova, FedAdagrad, FedYogi and FedAdam, respectively, in all

scenarios with an improved final test accuracy up to 9%, 9%, 9%, 10%,

11% and 11%, respectively, as shown in Table 1 and Figure 8, respec-

tively. Its advantage is especially pronounced on highly non-IID

dataset across clients in Figure 8(a). Likewise, the CLP augmented
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Figure 9: Communication costs of FedProx and CriticalProx
on non-IID CIFAR-10.

Dataset

(Model)

Non-IID

Degree

FedProx CriticalProx

CIFAR-10

(AlexNet)

α = 0.1 77 37
α = 0.2 75 40
α = 0.3 73 36

CIFAR-10

(VGG-11)

α = 0.1 75 35
α = 0.2 76 43
α = 0.3 71 36

Table 3: Communication rounds required by FedProx and
CriticalProx to achieve a targeted accuracy on non-IID
CIFAR-10.

method, e.g., CriticalProx leads to a smaller overall communi-

cation cost to achieve the final test accuracy compared to that of

the corresponding baseline FedProx, as shown in Figure 9, while

maintaining a comparable average number of clients involved in

each round. Similarly, CriticalProx requires fewer communica-

tion rounds to achieve a targeted accuracy, which is chosen to be the

final test accuracy of FedProx than FedProx itself, as shown in Ta-

ble 3. Similar observations can be made for other five comparisons,

which can be found in [53].

4.4 Ablation Study
In this subsection, we conduct a comprehensive ablation study to

investigate the impacts of different hyperparameters in the design of

our CriticalFL framework. For ease of readability, we only present

experimental results with FedAvg, FedProx, VRL-SGD and FedNova.
Similar results hold for FedAdagrad, FedYogi and FedAdam, and
hence are omitted here.

Detection Thresholds. As discussed in Figure 2, our experiments

reveal that CLP can be efficiently identified using FGN via a simple

threshold-type rule in Equation (2). We now evaluate the sensitiv-

ity of the threshold value δ used to declare CLP. The candidate

values are {0, 0.01, 0.03, 0.05, 0.2, 0.35, 0.5}, and the correspond-

ing final test accuracy of CriticalFL using AlexNet on non-IID

CIFAR-10 and Fashion-MNIST is illustrated in Figure 10. When data

partitions are highly non-IID (i.e., α = 0.1), the CLP declaration

determined by δ has an observable effect on the final accuracy.

This is because as δ becomes larger, fewer rounds in the initial

phase are declared as CLP by Equation (2). As a result, the effect

of being CLP augmented on the final test accuracy is shallowed

since CriticalFL only uses a larger number of clients in fewer

rounds compared to FedAvg according to Algorithm 2. On the other

hand, CriticalFL is robust to the detection process, i.e., tolerant

to detection errors with different threshold values when data parti-

tions are not highly non-IID. Similar observations can be made for

CriticalProx, CriticalVRL, CriticalNova, CriticalAdagrad,
CriticalYogi and CriticalAdam and hence are relegated to [53].

Thus we set δ = 0.01 in our experiments.

Non-IID Degree.We simulate a heterogeneous data partition into

M clients using the Dirichlet distribution with parameter α . From
Figure 11, we observe that being CLP augmented consistently im-

proves the final test accuracy of a state-of-the-art method across all

values of α in consideration. For example, CriticalFL always out-

performs FedAvg, and CriticalProx always outperforms FedProx.
The benefits of being CLP augmented are especially pronounced

when the datasets across clients are highly non-IID (i.e., a smaller

value of α ). Hence, we choose α = 0.1, 0.2, 0.3 for illustrations in

above experiments. For ease of readability, we set α = 0.1 in the

rest of ablation studies. Similar observations can be made with α =
0.2, 0.3 and hence are omitted. In addition, as the non-IID degree

decreases (as α increases), the final test accuracy of CriticalFL,
CriticalProx, CriticalVRL, CriticalNova, CriticalAdagrad,
CriticalYogi and CriticalAdam increases. This is consistentwith
recently reported observations, e.g., in [3, 29] that non-IID degree

degrades the model final test accuracy.

Local Training Epochs.We note that the number of local training

epochs (denoted E) is a common parameter shared by considered

baselines, which reportedly has an impact on the performance

of FedAvg [32, 44]. To this end, we evaluate the effect of E using

AlexNet on non-IID CIFAR-10 and Fashion-MNIST with α = 0.1.

The candidate local epochs we consider are E ∈ {1, 2, 3, 4, 5} as done
in [47]. From Figure 12, we observe that increasing the number of

local epochs improves the final test accuracy in general, and being

CLP augmented consistently improves the final test accuracy of

state-of-the-art methods across all values of E. Since the gains in
test accuracy exhibit the “diminishing return effect” as the number

of local epochs increases, we set E = 2 in our experiments.

Weight Decay. Though the CLP in FL are robust to weight decays

as reported in [52], the final test accuracy using AlexNet on non-

IID CIFAR-10 and Fashion-MNIST with α = 0.1 is still affected

with weight decays as shown in Figure 13. Again, we consistently
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Figure 11: Impact of non-IID degree.
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Figure 12: Effect of local training epochs.

0 1e-5 1e-4 1e-3 1e-2
WD

15

20

25

30

35

Fi
na

l A
cc

ur
ac

y 
(%

)
(a) CIFAR-10

0 1e-5 1e-4 1e-3 1e-2
WD

30

35

40

45

50

55

(b) Fashion MNIST

FedAvg
CriticalFL

FedProx
CriticalProx

VRL-SGD
CriticalVRL

FedNova
CriticalNova

Figure 13: Effect of weight decays.
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Figure 14: Impact of number of clients.
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Figure 15: Impact of client participation rate.

observe the benefits of being CLP augmented across all values of

weight decays. Since the advantage decreases as the weight decay

increases, we set the weight decay to be 10
−5

in our experiments.

Number of Clients. In all of our above experiments, we consider

a FL setting with 128 clients in total. We now consider the same

experimental settings as above besides varying the total number

of clients in the system using AlexNet on non-IID CIFAR-10 and

Fashion-MNIST with α = 0.1. As shown in Figure 14, the advantage

of being CLP augmented exhibits across all settings, i.e., CriticalFL
(resp. CriticalProx) outperforms FedAvg (resp. FedProx) regard-
less of the total number of clients. Without loss of generality, we

chooseM = 128 in our experiments.

Client Participation Rate. In all of our experiments, our consid-

ered baselines select 16 out of 128 clients to participate in each

training round, i.e., the participation rate is 12.5%. We now investi-

gate the impact of client participation rates on the final test accu-

racy and being CLP augmented using AlexNet on non-IID CIFAR-10

and Fashion-MNIST with α = 0.1. Again, when a state-of-the-art

method is augmented with the CLP, the final test accuracy is con-

sistently improved across all client participation rates as shown

in Figure 15. The advantage is particularly pronounced with a

low participation rate. This is quite intuitive since in our CLP aug-
mented framework, CriticalFL selects more clients during CLP
than FedAvg (see line 8 in Algorithm 2), and hence the benefits are

more obvious when FedAvg has a low client participation rate. We

select 16 clients, i.e., a 12.5% participation rate for all state-of-the-art

methods via considering the tradeoff between final test accuracy

and benefits of being CLP augmented.

Randomly Increasing andDecreasing theNumber of Selected
Clients. Besides deterministically increasing or decreasing the

number of selected clients as in CriticalFL, we randomly increase

or decrease the number. Specifically, we consider two settings. On

one hand, we fix the probability of decreasing the selected clients

from m to m/2 to be 30% in each round, and investigate the im-

pact of the probability of increasing the selected clients from m

to 2m in each round. On the other hand, we fix the probability
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Figure 16: Test accuracy of CriticalFL when randomly in-
crease the number of participated clients.
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Figure 17: Test accuracy of CriticalFL when randomly de-
crease the number of participated clients.
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Figure 18: Impact of the number of local parameters trans-
mitted during CLP on the final test accuracy of CriticalFL.
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Figure 19: Relations between FGN and the number of se-
lected clients in each round.

of increasing the selected clients from m to 2m to be 30% in each

round, and investigate the impact of the probability of decreasing

the selected clients fromm to m/2 in each round. We report the final

test accuracy of the model, and compare it with CriticalFL (see
Algorithm 2) and FedAvg. As shown in Figures 16 and 17, random

increase or decrease may not necessarily improve the performance

of FedAvg. This is due to the fact that the random strategy may

not necessarily align with the findings of CLP [2, 52] that more

data/clients need to be involved in early training phases.

Number of Local Parameters. To improve the communication

efficiency, all selected clients during CLP only share top L local pa-

rameters with the server in our CriticalFL (line6 in Algorithm 2).

We set the L = 20% in our experiments and now evaluate its impact.

The final test accuracy of CriticalFL with different values of L
is shown in Figure 18. On one hand, if L is too small, then not

enough parameters (i.e., updated model information) is transmitted

to the server, and hence will degrade the final test accuracy. On

the other hand, when L is larger, some parameters are not that

much important, and hence brings marginal improvement at the

cost of communications. Similar observations can be made in other

baseline methods. Hence, we set L = 20% in our experiments.

Relations between the Number of Selected Clients and the
FGN. We report the number of selected clients and the FGN curve

in Figure 19. We observe that more clients are involved in the early

training phases where CLP occur. This is consistent with the design

of our CriticalFL framework, where more clients are only needed

in the initial learning phase (see Section 3.2).

5 CONCLUSION
In this paper, we presented CriticalFL, a simple but powerful CLP
augmented FL framework for adaptive client selection. CriticalFL
worked by adaptively choosing more clients in CLP during the FL
training process and fewer clients elsewhere. We proposed a practi-

cal and easy-to-compute federated gradient norm (FGN) metric to

identify such CLP during the training process in an online manner.

We showed that CriticalFL significantly improved the final test

accuracy by up to 11% compared to its counterpart FedAvg using dif-
ferent models and datasets, while maintaining comparable or even

better communication efficiency. Finally, we illustrated the general-

ization of our proposed CLP augmented framework via manipulat-

ing the client selection of state-of-the-art methods augmented by

CriticalFL. In the future work, we want to extend CriticalFL to
improve FL of different machine learning models on other popular

techniques such as gradient compression/quantization, fair aggre-

gation, personalization, and adversarial attacks. We also believe

that it is important to study the performance of CriticalFL on

other models and datasets.
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