
Robust Searching-based Gradient Collaborative Management in

Intelligent Transportation System

HONGJIAN SHI, School or Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,

China

HAO WANG, Division of Computer Science and Engineering, Louisiana State University, USA

RUHUI MA∗, School or Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,

China

YANG HUA, School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfas,

UK

TAO SONG, School or Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China

HONGHAO GAO, School of Computer Engineering and Science, Shanghai University, China

HAIBING GUAN, School or Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,

China

With the rapid development of big data and the Internet of Things(IoT), traic data from an Intelligent Transportation

System(ITS) is becoming more and more accessible. To understand and simulate the traic patterns from the traic data,

Multimedia Cognitive Computing(MCC) is an eicient and practical approach. Distributed Machine Learning(DML) has

been the trend to provide suicient computing resources and eiciency for MCC tasks to handle massive data and complex

models. DML can speed up computation with those computing resources but introduces communication overhead. Gradient

collaborative management or gradient aggregation in DML for MCC tasks is a critical task. An eicient managing algorithm

of the communication schedules for gradient aggregation in ITS can improve the performance of MCC tasks. However,

existing communication schedules typically rely on speciic physical connection matrices, which have low robustness when

a malfunction occurs. In this paper, we propose Robust Searching-based Gradient Collaborative Management(RSGCM) in

Intelligent Transportation System, a practical ring-based gradient managing algorithm for communication schedules across

devices to deal with ITS malfunction. RSGCM provides solutions of communication schedules to various kinds of connection

matrices with an acceptable amount of training time. Our experimental results have shown that RSGCM can deal with more

∗Ruhui Ma is the corresponding author.

Authors’ addresses: Hongjian Shi, shhjwu5@sjtu.edu.cn, School or Electronic Information and Electrical Engineering, Shanghai Jiao Tong

University, 800, Dongchuan Rd., Shanghai, China, 200240; Hao Wang, haowang@lsu.edu, Division of Computer Science and Engineering,

Louisiana State University, Baton Rouge, Louisiana, USA; Ruhui Ma, ruhuima@sjtu.edu.cn, School or Electronic Information and Electrical

Engineering, Shanghai Jiao Tong University, 800, Dongchuan Rd., Shanghai, China, 200240; Yang Hua, Y.Hua@qub.ac.uk, School of Electronics,

Electrical Engineering and Computer Science, Queen’s University Belfas, Belfast, UK; Tao Song, songt333@sjtu.edu.cn, School or Electronic

Information and Electrical Engineering, Shanghai Jiao Tong University, 800, Dongchuan Rd., Shanghai, China, 200240; Honghao Gao,

gaohonghao@shu.edu.cn, School of Computer Engineering and Science, Shanghai University, Shanghai, China; Haibing Guan, hbguan@sjtu.

edu.cn, School or Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800, Dongchuan Rd., Shanghai, China,

200240.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2022 Association for Computing Machinery.

1551-6857/2022/7-ART $15.00

https://doi.org/10.1145/3549939

ACM Trans. Multimedia Comput. Commun. Appl.

HTTPS://ORCID.ORG/0000-0003-0743-7806
HTTPS://ORCID.ORG/0000-0002-1444-2657
HTTPS://ORCID.ORG/0000-0001-9592-8490
HTTPS://ORCID.ORG/0000-0001-5536-503X
HTTPS://ORCID.ORG/0000-0002-5965-3140
HTTPS://ORCID.ORG/0000-0001-6861-9684
HTTPS://ORCID.ORG/0000-0002-4714-7400
https://orcid.org/0000-0003-0743-7806
https://orcid.org/0000-0002-1444-2657
https://orcid.org/0000-0001-9592-8490
https://orcid.org/0000-0001-5536-503X
https://orcid.org/0000-0002-5965-3140
https://orcid.org/0000-0001-6861-9684
https://orcid.org/0000-0002-4714-7400
https://doi.org/10.1145/3549939
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3549939&domain=pdf&date_stamp=2022-07-21

2 • Hongjian Shi, et al.

varieties of connection matrices than existing state-of-the-art communication schedules. RSGCM also increases the robustness

of ITS since it can restore the system’s functionality in an acceptable time when device or connection breakdown happens.

CCS Concepts: · Computer systems organization→ Fault-tolerant network topologies; · Computing methodologies

→ Multi-agent planning; · Networks→ Cloud computing.

Additional Key Words and Phrases: all-reduce, communication scheduling, gradient aggregation, robustness, collaborative

management

1 INTRODUCTION

The rapidly increasing intelligence of Intelligent Transportation System(ITS)[37, 46] and the increasing volumes

of traic data have turned traic data processing and analyzing into Multimedia Cognitive Computing(MCC)[1,

21, 60, 69, 71, 73, 75]. To derive the traic patterns and human behaviors from the massive data collected from

ITS, the demand for more eicient and efective computing ability has been the main problem in ITS. Similar

to traditional AI tasks, MCC for ITS can also adopt Distributed Machine Learning(DML) techniques to provide

suicient computing resources to handle the collected traic data.

A critical issue for ITS to fully utilize the advantages and the capacity of available computing resources is

the collaborative management of data. Although using more devices provides more computation power and

reduces the computation time, it also introduces additional communication costs, which slows down the tasks.

Carefully designing data managing strategies for diferent computing resources conditions and applications is

critical for MCC tasks in ITS. The MCC tasks in ITS are closely related to DML for AI tasks, so MCC in ITS

can borrow the techniques from traditional DML, with some proper modiications. One way for DML to better

utilize the computational resources is through parallelism. Parallelism allows the devices to perform computation

simultaneously, but with little communication between devices to ensure the correctness of the computation. As

part of the collaborative management of devices, parallel communication is essential to increase eiciency and

robustness.

DML exploits parallelism across multiple computing devices to accelerate the training process. There are

two major parallelism schemes, model parallelism, and data parallelism. Model parallelism divides a model into

sub-models and assigns them to diferent devices, which is helpful to handle huge deep learning models with

millions of parameters like VGG[56], DenseNet[27], and BERT[15]. Instead, data parallelism splits a dataset into

sub-datasets to process with diferent devices to tackle the tasks with large datasets, such as ImageNet[48]. In

model parallelism, a sub-model usually takes the output of its precedent sub-models as input, which brings

dependency between the two sub-models. Such dependency makes it hard to fully parallelize the computation of

all sub-models. However, data parallelism does not enforce such dependencies so that each device can execute

forward propagation and backpropagation simultaneously. Since the dataset can be shared among diferent deep

learning models, data parallelism is relatively easy and can be used universally on diferent computing devices. In

addition, due to the heterogeneity of devices and connections in ITS, data parallelism is a better implementation

than model parallelism, so it is more suitable for MCC tasks in ITS.

Data parallelism extensively reduces the computation time, but the communication cost rises as the device

boosts. With more devices participating in training, the collaborative management of data has been a critical issue

in ITS. One important scenario is the collaborative management of gradients in MCC tasks in ITS. The cost from

gradient aggregation[65] across devices dominates the whole training process during the training process. [10]

proves that the performance of Synchronous Stochastic Gradient Descent (SSGD) is better than the performance

of Asynchronous Stochastic Gradient Descent (ASGD), we mainly focuses on the optimization of the SSGD in

this paper. SSGD irst generates a global gradient using the local gradients on all devices, and then returns the

global gradient back to all devices. All-reduce[58] is a widely applied collective for gradient aggregation in DML.

Gradient aggregation with all-reduce collective has been developed in the past decades, and many communication

ACM Trans. Multimedia Comput. Commun. Appl.

Robust Searching-based Gradient Collaborative Management in Intelligent Transportation System • 3

schedules have been introduced. In the beginning, originate from the idea of parameter server[34], the approaches

are centralized designs, also called the tree-based communication schedules, like [58, 74]. In tree structures, the

root device is responsible for aggregating all the local gradients, computing the global gradient, and sending

the global gradient back to the other devices. However, the heterogeneous resource demands of tree structures

between root device and other devices lead to an uneven workload distribution on diferent devices, which

results in limited system scalability. As the number of devices increases, the urge to develop a high scalability

structure drives the emergence of decentralized designs, also called the ring-based communication schedules.

Such communication schedules have an even workload on each device, so the scalability improves[3].In ITS,

communication is usually limited, where only a small portion of data can be transferred simultaneously to a

device. In such cases, ring-based communication schedules, which require less data transition, are better than

tree-based communication schedules.

Most research focuses on the eiciency of gradient aggregation by modifying the communication schedule

and the physical connection matrix. However, another critical issue is the robustness of ITS. As a practical and

real-time scenario, device malfunction or connection malfunction is a possible event in ITS. Maintaining the

functionality of the whole system when facing those conditions needs to be carefully addressed. Currently, for

gradient aggregation in MCC, most of the implementations have a speciic physical connection matrix that

supports the communication schedule, which means that if one of the devices or connections breakdown, the

communication schedule collapses. In addition, none of the implementations includes a backup communication

schedule, which largely reduces the robustness of gradient aggregation. There were researches on network

collaboration like [8, 39, 40, 64, 70, 72], on network robustness like [2, 12, 23, 24, 47, 57, 67, 76], and on DML like

[4ś6, 11, 25, 32, 36, 61ś63]. Among all those researches, Blink[61] is the only recent algorithm that increases

the robustness of gradient aggregation in DML. Although Blink[61] was proposed as a gradient managing

algorithm, it mainly focuses on inding a more eicient communication schedule with spanning trees. As tree-

based communication schedules fail to handle communication-limited scenarios, such tree-based communication

scheduling algorithms like Blink can hardly be used in our scenarios. Still, current applications like MPI[20],

NCCL[44], Horovod[52], TensorFlow[22], and PyTorch[19] adopt the ring-based communication schedules, so a

ring-based communication scheduling algorithm is needed.

In this paper, we propose Robust Searching-based Gradient Collaborative Management(RSGCM) in Intelligent

Transportation System, a ring-based gradient managing algorithm that can provide communication schedules

for gradient aggregation for the collaborative management in ITS if device or connection malfunction happens.

RSGCM requires zero modiication on the physical level, which decreases the reliability of the gradient aggregation

on the physical condition, thus increasing the robustness of gradient aggregation. With RSGCM, even if the MCC

tasks in ITS sufer from a device or connection breakdown, the training can continue. Our contributions include:

• We propose RSGCM, a communication scheduling algorithm for ring-based communication schedules

that can increase the robustness of gradient aggregation. RSGCM uses Monte Carlo Tree Search as the

optimization method, which proves to be the most stable optimization method.

• We have formulated gradient aggregation scheduling problem with mathematical representation that can

be solved or optimized and presented most SOTA communication schedules with the formulation.

• We have evaluated RSGCM on its robustness and parameter representative ability. The experimental

results show that RSGCM can adapt to diferent connection matrices or breakdown conditions that other

communication schedules fail to handle and also show the efectiveness of Monte Carlo Tree Search.

2 BACKGROUND AND MOTIVATION

Data parallelism splits the global dataset into local datasets and assigns them to multiple computing devices.

During each iteration, data parallelism uses a three-step training procedure. First, each device performs the forward

ACM Trans. Multimedia Comput. Commun. Appl.

4 • Hongjian Shi, et al.

propagation on its local dataset to obtain the local gradient. Second, gradient aggregation is conducted among all

devices to compute the global gradient using the local gradients. Third, each device performs backpropagation

using the global gradient and updates the original model. Since each device requires the global gradient computed

by the local gradients, the collective to use is all-reduce.

The all-reduce collective has been developed in High Performance Computing for a long time but was

introduced to DML in the last decade. The development of gradient aggregation with the all-reduce collective, or

communication schedules, is shown in Fig. 1.

2005

Recursive Tree [58]

2013

Butterly [74]

2016

Ring All-reduce [3]

2018

Hybrid all-reduce [28]

2018

2D-Mesh [68]

2018

2D-Torus [41]

2019

BlueConnect [11]

2020

FlexReduce [32]

2020

Blink [61]

2020

2D-HRA [29]

Fig. 1. The timeline of the development of gradient aggregation algorithms with the all-reduce collective.

Communication schedules mainly contain two kinds, tree-based and ring-based. Tree-based communication

schedules are centralized methods. There are two major tree structures, Recursive Tree[58] and Butterly[74].

Ring-based communication schedules are decentralized methods. It starts from Baidu’s Ring all-reduce[3], widely

used in MPI[20], NCCL[44], and Horovod[52]. NCCL is used both in TensorFlow[22] and PyTorch[19]. The

workload of Baidu Ring all-reduce is even among all devices, and those gradient portions, or data blocks, can be

transferred independently to increase the eiciency. But the scalability decreases as more devices are included.

More devices bring more communication steps, which increases the latency of the communication schedule. Other

ring-based communication schedules are proposed to tackle this problem, and most of them use hierarchical

approaches, like Hybrid all-reduce[28], 2D-Mesh[68], 2D-Torus[41], and 2D-HRA[29]. A typical communication

schedule is 2D-Mesh[68] shown in Figure 2. The irst step is a horizontal ring all-reduce on the irst half of each

data block and a vertical ring all-reduce on the second half of each data block. The second step is the reverse of the

irst step: a horizontal ring all-reduce on the second half of each data block and a vertical ring all-reduce on the

irst half of each data block. This completes the communication schedule. This indicates that most communication

schedules can be divided into multiple ring all-reduces.

Data

Block 1

Data

Block 2

Data

Block 3

Data

Block 4

Data

Block 5

Data

Block 6

Data

Block 7

Data

Block 8

Data

Block 9

Ring all-reduce

Fig. 2. Communication schedule of 2D-Mesh[68]

However, those communication schedules need speciic physical connection matrices to support the transition

of data, which means that they have low robustness. That is, a speciic physical connection or a speciic device

breakdown leads the whole schedule to malfunction. Blink[61] provides a gradient managing algorithm for

diferent connection matrices based on spanning trees for tree-based communication schedules. No gradient

managing algorithm can handle diferent connection matrices for ring-based communication schedules.

ACM Trans. Multimedia Comput. Commun. Appl.

Robust Searching-based Gradient Collaborative Management in Intelligent Transportation System • 5

3 ROBUST SEARCHING-BASED GRADIENT AGGREGATION(RSGCM)

Searching Space

Representation of

a single action

Construction rules of

the Searching Space

Monte Carlo Tree Search

Action sampling

strategy

Node features

updating strategy

Branch pruning

strategy

Environment

Representation of

data distribution

The time of the

communication

algorithm

Input

Connection matrix

State

Action

The feedback

reward

Reward

Communication

algorithm

Output

Construct

the

Searching

Space

Create

the

Environment

Output

result

Return

the reward
Sample

an action

Fig. 3. Overview structure of our system.

We propose Robust Searching-based Gradient CollaborativeManagement(RSGCM) in Intelligent Transportation

System, a gradient managing algorithm for ring-based communication schedules that increases the robustness

of the gradient aggregation process. Our system takes the physical connection matrix as the input and outputs

the communication schedule. The physical connection matrix describes whether there is a connection between

two devices. Two values are transferred between the three sub-algorithms, the action and the reward. An action

includes a set of ring all-reduces that can be performed simultaneously. A reward represents how well is the

chosen action.

The main structure of RSGCM includes three sub-algorithms shown in Fig. 3. The irst is the Searching Space,

a set of actions to be sampled. The major designs in this sub-algorithm are the representation of a single action

and the construction rules of the Searching Space. The second is the Monte Carlo Tree Search (MCTS), the

decision-making agent that chooses an action from the Searching Space with a speciic strategy to perform in the

environment. The major designs in this sub-algorithm are the strategy to choose action, the updating strategy

of tree nodes, and the pruning strategy of the tree. The third is the Environment, a sub-algorithm that takes

the action chosen from the MCTS and evaluates its performance. The feedback from Environment is used to

update the MCTS for better choice. The major designs in this sub-algorithm are the representation of the data

distribution, the simulation model, the actual implementation, and the design of the reward.

In conclusion, RSGCM takes a physical connectionmatrix and constructs the Searching Space. Then it repeatedly

samples an action from the Searching Space, evaluates the received action in the Environment to get the reward,

and updates the Monte Carlo Tree. Finally, the Environment provides the inal communication schedule as the

ACM Trans. Multimedia Comput. Commun. Appl.

6 • Hongjian Shi, et al.

result. The following sections are arranged as follows. Section 3.1 introduces the Searching Space; section 3.2

introduces the MCTS; section 3.3 introduces the Environment.

3.1 Searching Space

The irst sub-algorithm is the Searching Space. The actions are sampled from Searching Space. It mainly has

two critical designs, the representation of a single action and the construction rules of the Searching Space. The

notations used in this section are shown in Table 1.

Table 1. The notations for Searching Space

Notations Meanings Notations Meanings Notations Meanings

� list of rings-set � connection matrix � number of devices in a ring

�� a set of rings � maximum connection � initial device for generating

�� � a single ring � system parameter � total number of devices

� a list of blocks � connection priority DNL device number list

�� a single block � extension parameter DAM device available matrix

FL factor list � searching upper limit CAM connection available matrix

For the representation of a single action, we propose the following format. Each action contains two parts,

the list of ring-sets � and the corresponding list of blocks �. In � , there are several ring-sets �1, �2, ..., �� , ..., where

each ring-set contains several rings ��1, ��2, ..., ��� , All the rings in � can be performed simultaneously in the

Environment because they don’t share the connections. All the rings in �� can be performed on the same data block

since they don’t share the devices. Each block �� in � is corresponding to �� in � . As a result, the representation of

a single action is shown in (1).

� = [�1, �2, ..., �� , ...] = [[�11, �12, ..., �1� , ...], [�21, �22, ...], ...] (1)

� = [�1, �2, ..., �� , ...] (2)

We can describe this action as: all rings in �� perform ring all-reduce on data block �� .

The construction of Searching Space includes several episodes, and each episode results in an action in the

Searching Space. Several steps are needed in an episode. To construct the Searching Space, we here introduce our

construction rules. The idea is taking the connection matrix� as the input, together with the system parameter

� , iteratively inding diferent actions according to diferent iteration-related parameters, including the number

of devices in a ring � , the initial device � , and connection priority � . The system parameter � represents the

hardware capability. � = 1 means that a single device can support one sending process and one receiving process

simultaneously, same as the device capability used in 2D-Torus[41]. � = 2 implies that a single device can

simultaneously support two sending processes and two receiving processes, which is the TPU capability[31]

used in 2D-Mesh[68]. We only consider those two � since other values don’t relect actual device capability.

Here we further explain the iteration-related parameters. � is the number of devices in a single ring that we

will search for in one construction episode. We irst get the total number of devices � . Then we set a extension

parameter � to obtain a device number list ��� = [�, � + 1, ..., � + �]. Next with a upper limit � , calculate

the factor of all elements in ��� that is less than � , we can construct a factor list �� = [�1, �2, ...] satisies that
3 ⩽ �� < � . Finally, the value of � is chosen from ��. � is the initial device with which our construction episode

starts. The value of � is the device’s index, which is chosen from [0, 1, ..., � − 1]. The purpose of � is to ensure that
all devices can appear in an action so that the communication schedule can complete the all-reduce collective. �

ACM Trans. Multimedia Comput. Commun. Appl.

Robust Searching-based Gradient Collaborative Management in Intelligent Transportation System • 7

Algorithm 1 Action Construction Algorithm

Input: Connection matrix� , system parameter � , number of devices in a ring � , initial device � , and connection

priority �

Output: A single action �

1: Initialize � = [�, �] where � = [], � = [], and ��� = ��� = � .

2: for Ring-set � = [0, 1, ..., � − 1] do
3: Initialize �� = [].
4: while there are more than � devices in ��� and there are possible rings that haven’t been constructed

do

5: Initialize ��� = [�] and the current processing device � = � .

6: while The devices in ��� don’t form a complete ring do

7: Choose a device ���� = �� � [�] [�] = �� from the adjacency list �� � [�] = [�1, �2, ...]of device �
8: Add ���� to ��� .

9: if ��� forms a complete ring of � device then

10: �� .������ (���).
11: From ��� , delete all devices exists in ��� .

12: From ��� , delete all connections exists in ��� .

13: else if ��� has � devices but doesn’t form a complete ring then

14: Remove ���� from ��� .

15: Set � = (� + 1)%�.

16: else if ��� doesn’t have � devices then

17: Set � = ���� .

18: end if

19: end while

20: end while

21: Choose one of the block operations �� .

22: � .������ (��), �.������ (��).
23: end for

24: The inal action is � = [�, �].

is the connection priority we used to choose a connection from the adjacency list of a single device. If a single

device can connect to up to� devices in the connection matrix, then the value of � is [0, 1, ...,� − 1] indicates
the index of the next device in the current device adjacency list.

We can perform the action construction algorithm with those iteration-related parameters as in Algorithm 1.

In the algorithm, we maintain the device availability matrix ��� and the connection availability matrix ��� ,

indicating the device and connection available later.

Using Algorithm 1, we can construct a single action, and through multiple episodes, we can construct the whole

Searching Space. As a result, a 2-dimension mesh grid connection matrix in 2D-Mesh constructs a Searching

Space of 445 actions, an acceptable sample size for the MCTS.

To better get through the procedure of a single action’s construction, we here provides an example. Suppose we

are construct with� in Fig. 4,� = 3, � = 2, � = 4, � = 1, and � = 2. We are to obtain� = [�, �] = [[�0, �1], [�0, �1]].
The process is shown in Figure 4.

ACM Trans. Multimedia Comput. Commun. Appl.

8 • Hongjian Shi, et al.

Fig. 4. The process of creating an action. First, starting from node � = 1, the agent finds node 5 of index � = 2 from node 1’s

adjacency list. Second, the agent finds node 6 of index � = 2 from node 5’s adjacency list. Third, the agent finds node 7 of

index � = 2 from node 6’s adjacency list, but the � = 4 nodes do not form a ring. So in the fourth step, the agent finds node

2 of index � ′ = 0 from node 6’s adjacency list. Thus [1, 5, 6, 2] forms a ring. Remove them from DAM and CAM, and start

looking for another ring. [3, 7, 4, 0] forms another ring. Ater that, all nodes are removed, so �0 has been constructed. Next,

find another set of ring �1 from CAM. Finally we can obtain this action of � = [[[1, 5, 6, 2], [3, 7, 4, 0]], []].

We can ind a solution to the all-reduce collective through the construction procedure, but it can be a sub-

optimal solution instead of an optimal solution. Our Searching Space construction procedure decreases the

searching time for the solution at the cost of reducing the probability of inding the optimal solution. In addition,

although the Searching Space only contains ring structures after the construction procedure, we can also expand

the Searching Space by adding tree structures to it. In this way, the gradient managing algorithm can ind a more

eicient communication schedule but can take longer to ind the solution.

3.2 Monte Carlo Tree Search (MCTS)

Our second sub-algorithm is the Monte Carlo Tree Search (MCTS) for sampling actions. From Section 3.1, we

have already reduced the size� of the Searching Space, but we are still dealing with a huge searching space, so

we need an eicient agent to perform the sampling and updating processes. For a Searching Space constructed

from a connection matrix of 9 devices, we are sampling from� = 445 actions.

Several algorithms have been used for diferent optimization problems, but such algorithms are hard to

implement on such searching space. For traditional algorithms, we’ve considered the enumeration algorithm.

Enumeration algorithm[14] takes unacceptable time to search for the solution since there are toomany possibilities.

If computing the optimal solution directly, solvers[7] usually obtain the best performance. Solvers ind the exact

solution to an optimization problem, but the computation complexity is relatively large. Although solvers can

be used on such problems, it is not suitable in the case of DML robustness instead of eiciency. For heuristic

algorithms, we’ve considered greedy algorithm, Hill Climbing(HC), Simulated Annealing(SA), Particle Swarm

Optimization(PSO), and Ant Colony Optimization(ACO). The greedy algorithm[14] fails because the feedback

only exists when the all-reduce collective is inished, but not from each communication step. HC[51] is an upgrade

of greedy algorithm that chooses the optimal solution from the neighbors of the current solution. It is likely to

converge to local optimal, so it is not suitable for this problem. SA[18] is similar to MCTS, which is also based

ACM Trans. Multimedia Comput. Commun. Appl.

Robust Searching-based Gradient Collaborative Management in Intelligent Transportation System • 9

on Monte Carlo sampling and exploration. The disadvantage of SA is that it does not fully utilize the history

trajectories and does not maintain the exploration aspect after it converges to a sub-optimal. PSO[13] is originated

from bird foraging. It is not applicable in this scenario because the optimization of gradient aggregation is not in

continuous space with precise action dimensions, so it isn’t easy to deine the particle’s position, and velocity

as PSO requires. ACO[17] uses the trajectories of ants as the solutions, and the best solution is the shortest

trajectory. It is similar to MCTS since it evaluates trajectories according to previous visits and inally converges

to the best trajectory. MCTS is more likely an upgrade of ACO by its exploration aspects. A new approach for

this kind of problem is Reinforcement Learning (RL), like REINFORCE[66], DDPG[35], A3C[42], and PPO[50].

All those algorithms failed to process searching space at this size, and feedback is sparse. Due to the lack of

convergence and lengthy training time.

We then focus on MCTS, a heuristic algorithm that maintains the exploration aspect and has high robustness in

our scenario. MCTS introduces a trade-of between training time and results to deal with a huge searching space

while remaining time-eicient. It is originated from Monte Carlo sampling. The simple Monte Carlo sampling

actions from the Searching Space with complete randomness and conclude the performance of each action

according to the sampling history. The problem is that Monte Carlo sampling does not have sampling priority

over better actions, which can mitigate the impact of good actions over the whole algorithm. MCTS maintains a

tree structure to store the useful information from the previous sampling trajectories and has a sampling strategy

that prefers to sample the trajectories that previously obtained better performance. Meantime, the strategy also

keeps an exploration aspect that can be lexibly adjusted. With the exploration aspect, during sampling, better

trajectories can still be found even though MCTS has converged. As a result, we choose MCTS as our optimization

algorithm.

For MCTS, tree nodes and tree branches are two aspects. A single tree node in the MCTS represents a state or

data distribution in the Environment. The decision of MCTS is based on this aspect. Several features are stored in

a tree node, including the following, which are also shown in Table 2.

Table 2. The notations for MCTS

Notations Meanings Notations Meanings Notations Meanings

� searching space size � exploration ratio � visiting counter

� total reward � recent reward � average reward

• The exploration ratio � indicates the probability of randomly choosing a speciic child node from the

current tree node. The initial value is � =
1
�
.

• The visiting counter � indicates the total count that Environment went through certain branches and

arrived at the current tree node. The initial value is � = 0.

• The total reward� indicates the total reward gotten in the previous visits. The initial value is� = 0.

• The recent reward � indicates the reward gotten from the last training episode.

• The average reward � indicates the average reward gotten in the previous visits. Its value is � =
�
�
.

A single branch in the MCTS represents an action or a communication step from the Searching Space. The

format of an action is described in Section 3.1. There are three major designs, the strategy for sampling actions

from the Searching Space, the strategy to update the features in the tree node, and the strategy to prune the

branches that is no longer eicient.

First, for the strategy for sampling action, we adopt the formula used in AlphaGo[49, 53ś55]. The formula to

sample action is shown in (3). In the equation, �ℎ������[�] refers to the ��ℎ child node of the current node and

����������� [�] refers to the probability to choose the action to the ��ℎ child node. The exploration ratio decides

ACM Trans. Multimedia Comput. Commun. Appl.

10 • Hongjian Shi, et al.

the ratio of experience probability and exploration probability. The experience probability is the irst term in (3)

whose value is based on previous training episodes. The exploration probability is the second term in (3) whose

value depends on the number of children nodes. If � increases, it means that the agent is more likely to make

decisions based on previous experience, where a larger average reward results in a larger sampling probability. If

� decreases, it means that the agent is more likely to choose actions that haven’t been visited.

����������� [�] = �ℎ������[�] .� + � ∗ �ℎ������[�] .� ∗
√
�

1 + �ℎ������[�] .� (3)

Second, to update the node features, we also adopt the strategy used in AlphaGo[49, 53ś55]. Equation (4)

shows the updating strategy for each value. The idea of updating is to improve the MCTS to sample more eicient

actions.

� = � + 1

� =� + �
� =

�
�

(4)

The third is the pruning strategy. To reduce the redundant training steps, we need to reduce the size of the

MCTS to obtain more eicient sampling. Also, the large size of MCTS introduces enormous memory stress to the

devices, so reducing the number of branches is essential. There are three pruning strategies.

• If the current communication schedule in the episode already has worse performance than the best

communication schedule at the current training step, we prune all the tree nodes under the current node.

• If the data transferred with the chosen action is redundant at the current training step, we prune all the

tree nodes under the current node.

• If the agent already met the maximum training step in a single training episode at the current training step,

we prune the current node.

3.3 Environment

The third sub-algorithm is the Environment for evaluating the actions chosen by the MCTS in Section 3.2.

Environment can store the best communication schedule over the previous training episodes and give feedback

to the MCTS. The Environment has two kinds, the Virtual Environment (VE) and the Realistic Environment (RE).

VE performs the training on a givenmodel, which evaluates the actionwith a performance formula. VE simulates

the data transition through a 3-dimension matrix called the data distribution or state. In that matrix, ����[�] [�] [�]
indicates whether device � has received the data block � from device � . Under the above representation, the data

distribution before and after the all-reduce collective are shown in (5) and (6)

� = � ⇐⇒ ����[�] [�] [�] = 1 (5)

∀�, �, � =⇒ ����[�] [�] [�] = 1 (6)

We here introduce the performance model to compute the reward of an action. Since our top concern is to

speed up the communication schedule, our performance model derives the reward from the execution time of the

communication schedule. During the all-reduce collective, the computation time to reduce the data only depends

on the computational power of a single device, while the communication time is related to the communication

schedule, we only evaluate the communication time using (�, �)[26] model where � is the latency �� and � is the

bandwidth �� . Using the notations in Table 3, we can represent the model with (7).

ACM Trans. Multimedia Comput. Commun. Appl.

Robust Searching-based Gradient Collaborative Management in Intelligent Transportation System • 11

Table 3. The notations for Environment

Notations Meanings Notations Meanings Notations Meanings

� ,�� connection latency � ,�� connection bandwidth � transferred data

� = �� + �� ∗ � (7)

Using (7), we are able to evaluate the performance of State-of-the-art (SOTA) communication schedules shown

in Table 4. We use ��−� (�, �) to denote the cost (� = � means latency cost, � = � means bandwidth cost) of

certain unit communication schedule (� = � means Butterly[74], � = � means Baidu Ring all-reduce[3]) on a

cluster of � devices and total amount of data with size � .

In Table 4, � represents the number of devices in a row, and � represents the number of devices in a column in

2D-Mesh[68] and 2D-Torus[41]. � represents the device number in each small group of Hybrid all-reduce[28].

Also, to simplify the total cost, we adopt several simpliication functions in (8).

�1 (�, �) = 2��� − 2���

�
(8)

�2 (�) = �� + ��� (9)

�3 (�) = �� − ��� (10)

Table 4. The cost of SOTA communication schedules under our performance model

Schedules Latency Cost Bandwidth Cost Total Cost

Butterly[74] ��−� (�, �) = �� ⌈log2 � ⌉ ��−� (�, �) = ��� ⌈log2 � ⌉ �2 (�) ⌈log2 � ⌉

Ring all-reduce[3] ��−� (�, �) = 2�� (� − 1) ��−� (�, �) = 2�� (� − 1) �
�

�1 (�, �) − 2�3 (�)

Recursive tree[58] 2��−� (�, �) 2��−� (�, �) 2�2 (�) ⌈log2 � ⌉

Hybrid all-reduce[28]
∑

�=�,� /�
��−� (�,�) + ��

∑

�=�,� /�
��−� (�,�) + ���

∑

�=�,� /�
�1 (�,�) − 4�3 (�) + �2 (�)

2D-Torus[41] ��−� (�, �) +��−� (�, �) ��−� (�, �) +��−� (�, �) �1 (�, �) + �1 (�, �) − 4�3 (�)

2D-Mesh[68] 2max
�=�, �

(��−� (�2 , �)) 2max
�=�, �

(��−� (�2 , �)) 2�1 (�2 ,max(�, �)) − 4�3 (�2)

2D-HRA[29]
∑

�=�, �,�

(��−� (�,�)) + ��
∑

�=�, �,�

(��−� (�,�)) + �� ∗ �
∑

�=�, �,�

(�1 (�,�)) − 6�3 (�) + �2

Our performance model is capable of representing all SOTA communication schedules mentioned. Based on

that performance model, we can get the simulation time of the communication schedule in each training episode

and save the best communication schedule with the least simulation time in the Environment. According to that

simulation time, we can derive the feedback from the VE to the MCTS. The feedback consists of three parts.

ACM Trans. Multimedia Comput. Commun. Appl.

12 • Hongjian Shi, et al.

• The done condition is whether the Environment has completed the all-reduce collective. According to the

data distribution after all-reduce collective in (6), when that distribution is met, we determine that the

all-reduce collective is done and is ready for feedback and update.

• The valid data transferred indicate whether the current action successfully transferred data. If there is no

data transmitted, the VE will provide that information to the MCTS for pruning.

• The reward is the value used to update the MCTS nodes. We use the following steps to obtain the corre-

sponding reward from the simulation time. We maintain a reward list. There is an initial 0 in the list, which

means that the communication schedules that don’t inish the all-reduce collective get a reward of 0. If

an episode inishes the all-reduce collective during the training, it inserts the communication schedule’s

simulation time to the reward list in descending order. The index is the reward that will provide to the MCTS.

For example, a previous reward list is [0, 8.3, 6.5, 4.7]. If the current episode results in a communication

schedule with a simulation time of 6.5, then it will receive a reward of 2. Suppose the current episode

results in a communication schedule with a simulation time of 5.4. In that case, the new time is inserted

into the reward list so that the reward list is [0, 8.3, 6.5, 5.4, 4.7], and the current episode gets a reward of 3.

RE performs the training on an existing system, which evaluates the action with the system’s feedback. The

system performs communication schedules with NCCL[44] and CUDA[45] on a cluster of devices. We derive a

list of sets of ring all-reduce from the Environment as the representation of the communication schedules. Each

ring corresponds to a ncclAllReduce function call to perform the data transition in the actual system.

The data distribution is represented by the data bufer in the actual system. All communication is inplace

communication, which means the sending bufer and the receiving bufer have the same address. The data

distribution before and after the all-reduce collective are represented by (11) and (12) where ��� � �� [�] indicates
the data on device � .

��� � �� [�] = [�����1, �����2, ...] (11)

��� � �� [�] = [
�−1︁

�=0

���� �1,

�−1︁

�=0

���� �2, ...] (12)

The time of the communication schedule � is measured using cudaEvent, whose unit is millisecond and the

precision is a microsecond. Since the data size is � and the device number is � , the valid data transferred during

the all-reduce collective is � ∗ (� − 1) ∗ � , because the initial data on each device have been sent to all other

� − 1 devices. Thus, our reward for the existing system is deined with (13).

������ =

� ∗ (� − 1) ∗ �
�

(13)

In addition, our Environment aims at completing the all-reduce collective, but it is also capable of dealing with

other collectives like reduce-scatter, all-gather, broadcast, etc. Using all-reduce collective in our problem is that

the data distribution pattern of gradient aggregation is the same as all-reduce.

4 EVALUATION

RSGCM aims at increasing the robustness of the gradient aggregation process through a gradient managing

algorithm for the communication schedules that can handle malfunction in DML system. In this section, we

provide the settings of hyperparameters in Section 4.1, the major result that proves the robustness of the algorithm

in Section 4.2, and the inluence of the modiication on diferent parameters in Section 4.3.

ACM Trans. Multimedia Comput. Commun. Appl.

Robust Searching-based Gradient Collaborative Management in Intelligent Transportation System • 13

In addition, to better describe the resulting communication schedules, we here introduce the term �����,�
� ,�

. In

that expression, � is the number of devices in a single ring, � is the system parameter, � is the total number of

rings in that action, and� is the number of data blocks that those rings are operating on whose maximum value

is � . Then those SOTA ring-based communication schedules can be expressed in Table 5 where the notations are

the same as in Table 4.

Table 5. The expression of SOTA ring-structured GPU communication schedules

SOTA schedules Expression

Ring all-reduce[3] ����1,1
� ∗1

Hybrid all-reduce[28] ����1,1
�,� /� + ����1,1

� /�,1 + ����
1,1
�,� /�

2D-Torus[41] ����1,1�, � + ����
1,1
�,�

2D-Mesh[68] ����2,1√
�,

√
�
+ ����2,1√

�,
√
�

2D-HRA[29] ����1,1
�,� /� + ����1,1�, � + ����

1,1
�,� + ����

1,1
�,� /�

4.1 Setings of hyperparameters

We irst identify the meaning and initial values of the hyperparameters used during the experiments.

• The input connection matrix� is initially set to the 2-dimension mesh grid matrix used in 2D-Torus[41]

and 2D-Mesh[68]. The number of devices on the 2 dimensions is equal, which means that the connection

matrix for 16 devices is a 4 ∗ 4 matrix and the connection matrix for 25 devices is a 5 ∗ 5 matrix.

• The simulation latency is �� = 9�� , and the bandwidth is �� = 39��/��. Those parameters are derived

from the feature of NVLink[33].

• The total number of episodes �� indicates the number of communication schedules that we will sample

during the training process. The larger the value, the higher the probability of inding the optimal solution;

the lower the value, the quicker the training process. Initially, we set �� = 8 ∗� .

• The total number of sampling steps �� in an episode indicates the maximum actions in a communication

schedule. Initially, we set �� = � , which ensures the existence of a communication schedule from the

Searching Space that can complete the all-reduce collective.

• The exploration ratio � indicates how much the agent makes decisions based on experience or exploration.

The value of � follows a descending strategy in (14). In the equation, �1 = 10 indicates the initial value of

�, �2 = 0 indicates the inal value of �, ���� indicates the number of episodes used from �1 to �2, which

also means the number of episodes that includes an exploration part, and ��� indicates the current episode

number.

� = �1 −
�1 − �2
����

∗ ��� , (14)

• The data size � indicates the total amount of data on each device that is going to perform the all-reduce

collective. We set this value to 32MB for simulation.

4.2 Major experimental results

RSGCM can identify a communication schedule when the physical connection matrices of SOTA algorithms

encounter malfunction of devices or connections. As shown in Fig. 5, with system parameter � = 2, latency

ACM Trans. Multimedia Comput. Commun. Appl.

14 • Hongjian Shi, et al.

0 1 2

4 5 6

8 9 10

3

7

11

12 13 14 15

(a) Missing connection 5-6 Step 1.

0 1 2

4 5 6

8 9 10

3

7

11

12 13 14 15

(b) Missing connection 5-6 and 6-7 Step 1.

0 1 2

4 5

8 9 10

3

7

11

12 13 14 15

(c) Missing GPU 6 Step 1

0 1 2

4 5 6

8 9 10

3

7

11

12 13 14 15

(d) Missing connection 5-6 Step 2.

0 1 2

4 5 6

8 9 10

3

7

11

12 13 14 15

(e) Missing connection 5-6 and 6-7 Step 2.

0 1 2

4 5

8 9 10

3

7

11

12 13 14 15

(f) Missing GPU 6 Step 2

Fig. 5. The training results include exactly two steps for connection failure or device failure of the 2-dimension mesh grid

connection matrix. Red lines indicate the rings in the first ring-set, and the blue lines indicate the rings in the second ring-set.

�� = 0.01�� , and bandwidth �� = 0.1��/��, it appears that with connection malfunction or device malfunction,

RSGCM can ind a communication schedule that can achieve the all-reduce collective.

We also test our gradient managing algorithm on an actual system of 8 devices with the connection matrix

shown in Fig. 4. Our scenario is that at episode 50, if the connection between device 6 and 7 breakdowns, the

agent will start functioning and try to identify the possible communication schedules to complete the all-reduce

collective. The time to complete the all-reduce collective is shown in Fig. 6. We can observe that when the

malfunction happens, the time used for the all-reduce collective suddenly boosts. Still, as the number of episodes

increases, the solution found by the agent is gradually improving, which results in the igure that the time used is

closer to the time used before the malfunction.

Also, we conducted an experiment on the image classiication task of a 4-layer CNN over MNIST dataset,

shown in Figure 6 with optimization methods including Greedy[14], Simulated Annealing(SA)[18], Particle

Swarm Optimization(PSO)[13], and Monte Carlo Tree Search(MCTS)[49, 53ś55]. The connection matrix follows

the condition in Figure 5 where the connection 5-6 are missing. The data are unevenly distributed, where each

device only contains 2 labels out of the 10 labels in MNIST. In that case, aggregation is necessary to complete

ACM Trans. Multimedia Comput. Commun. Appl.

Robust Searching-based Gradient Collaborative Management in Intelligent Transportation System • 15

the training. The malfunction occurs in episode 5. Also, generating the Searching Space can start before the

malfunction occurs. We can remove the unavailable actions from the Searching Space according to the condition

and start optimizing. In this way, we can mitigate the overhead of generating the Searching Space.

(a) (b)

Fig. 6. (a) The time graph of the performance of the best communication schedule concerning the training episode. The failure

happens in episode 50. (b) Training curve of MCC task with diferent optimization methods including Greedy, Simulated

Annealing, Particle Swarm Optimization, and Monte Carlo Tree Search. "PSO_5" indicates the 5th client’s training curve

when using PSO.

The result shows that Greedy and SA failed to ind a feasible solution for aggregation. Although PSO and MCTS

can initialize a feasible solution and continue optimizing, MCTS is more stable than PSO. From the experiments

shown in Figure 7, MCTS successfully initializes 5/5 feasible solutions while PSO fails to initialize 2/5 solutions.

Compared to SOTA communication schedules, our algorithm shows robustness over malfunction. No backup

communication schedules or communication scheduling algorithms are provided for Baidu’s Ring all-reduce[3],

Hybrid all-reduce[28], 2D-Mesh[68], 2D-Torus[41], or 2D-HRA[29].

4.3 Influence of parameters

RSGCM can represent diferent connection matrices through modifying the parameters in RSGCM.

First is the system parameter � . The results with diferent � are shown in Fig. 8. We can ind that when � = 1,

each device is only included in one of the rings at a certain time, but when � = 2, each device can be included

in at most two of the rings at a certain time. � represents the diferent hardware capabilities of devices used in

2D-Torus[41] and TPUs[31] in 2D-Mesh[68].

Second is the latency-bandwidth-ratio (LBR) deined in (15).

��� =

��

��
(15)

It represents the connection capability. Intuitively, when � = 1, 2D-Torus[41] should be better than Baidu Ring

all-reduce[3] and when � = 2, 2D-Mesh[68] should be better than Double Ring all-reduce where there are two ring

all-reduces, and each one of them operates on all devices and on one data blocks out of the two. However, from

the result in Fig. 8, we ind that all solutions are Baidu Ring all-reduce or Double Ring all-reduce. The reason is

ACM Trans. Multimedia Comput. Commun. Appl.

16 • Hongjian Shi, et al.

(a) (b)

Fig. 7. (a) The training curve of the MCC task when using PSO. (b) The training curve of the MCC task when using MCTS.

The malfunction occurs in episode 5. "PSO1_5" indicates the training curve of the 5th client in the 1st trial. The optimization

runs for 5 separate trials to measure the stability. As a result, MCTS is more stable at finding a feasible solution than PSO.

that with diferent LBR, the latency or the bandwidth can either be the bottleneck of the communication schedule.

In Table 6, we compared the solutions of the same connection matrices under ��� = 10 : 1 and ��� = 1 : 10.

It appears that when � = 9, ��� = 10 : 1, the result is a 2D-Mesh, and when � = 25 or ��� = 1 : 10, the four

results are all Double Ring all-reduces.

Table 6. Diferent results of RSGCM under diferent LBR

LBR

10:1 1:10

�

9 ����2,13,6 + ����
2,1
3,6 ����2,18,2

16 ����2,26,4 + ����
2,2
4,6 ����2,116,2

25 ����2,125,2 ����2,125,2

Here we provide theoretical proof for the contradiction between the intuition and the results in Table 6. We

compare the performance of 2D-Mesh[68] and Double Ring all-reduce under an
√
� ∗

√
� matrix.

• For 2D-Mesh[68], from Table 4 we can get its performance model shown in (16)

�� (�, �) = 2�1 (
�

2
,max(

√
�,

√
�)) − 4�3 (

�

2
) = 2 ∗ (2��

√
� −

2��
�
2√
�

) − 4(�� − ��
�

2
) (16)

• For Double Ring all-reduce, from Table 4 we can also get its performance model shown in (17).

�� (�, �) = �1 (
�

2
, �) − 2�3 (

�

2
) = 2��� −

2��
�
2

�
− 2(�� − ��

�

2
) (17)

If we are looking for the LBR, which has better performance with 2D-Mesh[68] than Double Ring all-reduce,

(18) should be satisied.

ACM Trans. Multimedia Comput. Commun. Appl.

Robust Searching-based Gradient Collaborative Management in Intelligent Transportation System • 17

0 1 2

3 4 5

6 7 8

(a) � = 9 and � = 1.

0 1 2

3 4 5

6 7 8

(b) � = 16 and � = 1.

0 1 2

4 5 6

8 9 10

3

7

11

12 13 14 15

(c) � = 25 and � = 1.

0 1 2

4 5 6

8 9 10

3

7

11

12 13 14 15

(d) � = 9 and � = 2.

0 1 2

5 6 7

10 11 12

3

8

13

15 16 17 18

4

9

14

19

20 21 22 23 24

(e) � = 16 and � = 2.

0 1 2

5 6 7

10 11 12

3

8

13

15 16 17 18

4

9

14

19

20 21 22 23 24

(f) � = 25 and � = 2.

Fig. 8. The training result for the 2-dimension mesh grid connection matrix for diferent � and � . Red lines indicate the rings

in the first ring-set, and the blue lines indicate the rings in the second ring-set.

�� (�, �) > �� (�, �) ⇒ ��� >

�

2�
(18)

According to the result of (18), we ind a performance boundary which has diferent optimal solution on

diferent sides. When using 3 ∗ 3 connection matrix and data size of � = 32��, the performance boundary is

��� =
16
9 ��. Thus for the results in Fig. 8 and Table 6, we can derive that when ��� =

0.009
0.039�� =

9
39�� and

when ��� =
0.01
0.1 �� =

1
10��, Double Ring all-reduce has better performance and when ��� =

0.1
0.01�� =

10
1 ��,

2D-Mesh[68] has better performance.

In addition, when there are 16 or 25 devices, although from (18) we can derive that the performance boundary

is ��� = 1�� and ��� =
16
25��, it appears that Fig. 8 and Table 6 don’t follow the optimal solution to choose

2D-Mesh[68]. The reason is the trade-of between the training time and the solution’s performance.

The third is the value of �� . Under diferent values of �� , we perform RSGCM on the 4 ∗ 4 connection matrix

and get the result in Fig. 9(a). In the igure, simulation parameter � =

��

�
. Half of the episodes adapt exploration

during training, and the other half samples actions based on experience.

ACM Trans. Multimedia Comput. Commun. Appl.

18 • Hongjian Shi, et al.

From Fig. 9(a), we can observe that the agent tends to ind a better communication schedule with more training

episodes.

Fourth, we estimate the relationship between the time used for simulation and the size of the searching space.

It appears that from Table 7 where the number of connections is denoted as � , the time used for the construction

of the Searching Space �� is not relative to any of the parameters. Also, the simulation time �� and the size of the

Searching Space� is close to a linear relationship shown in Fig. 9(b). The result is a direct outcome since the

number of simulation episodes is 8 times the size of the Searching Space.

Table 7. The construction time of the Searching Space and the searching time for the communication scheduling algorithm

under diferent � and �

� � � � ��/� ��/� � � � � ��/� ��/� � � � � ��/� ��/�

9 18
1 47 0.27 97

16 32
1 70 140.15 145

25 50
1 221 31.58 488

2 445 0.45 1124 2 515 281.26 1363 2 1905 36.07 14641

(a) (b)

Fig. 9. (a) The relationship between the simulation episodes, represented by simulation parameter � , and the performance

of the final communication schedule. (b) The logarithm histogram of the relationship between the searching space size and

the searching time.

5 RELATED WORK

Optimization of network collaboration. [8] optimally partitions shared resources among various applications

over a regular edge infrastructure to guarantee a convergence bound and an optimal resource assignment. [40]

formulates a low-based delay cost minimization problem and uses entropic surjectivity to measure the sparsity

of the function and the limits of computation. [72] is a series of cost-eicient strategies that exploit cheaper

volatile cloud instances based on quantifying the relationship between active worker nodes, SGD convergence,

and training time. [70] deines cut metrics that measure the connectivity and identify the nonzero gap between

ACM Trans. Multimedia Comput. Commun. Appl.

Robust Searching-based Gradient Collaborative Management in Intelligent Transportation System • 19

the maximum low and the minimum cut. It develops polynomial-time approximation algorithms to compute

the optimal interdiction for a network low interdiction problem. [64] is a network-aware distributed learning

optimization methodology that trade of costs based on devices processing, oloading, and discarding data points,

which improves network resource utilization. [39] uses a lightweight trapdoor compression method for data

encryption on mobile to optimize communication eiciency.

Optimization of network robustness. [24] is a recursively deined data center structure called DCell, which has

higher network capacity and is fault-tolerant since it does not have a single point of failure and its distributed fault-

tolerant routing protocol performs near shortest-path routing. [23] is a network architecture called BCube and

designed explicitly for shipping-container-based, modular data centers, whose server-centric network structure

can speed up one-to-one, one-to-several, and one-to-all traic patterns. [12] uses edge rewiring methods to

enhance the loops in the network and results in the improvement of connectivity robustness.[67] uses dependency

link centrality product index to identify key fragile dependency links and removes them to enhance the robustness

of coupled networks. [76] is a per-packet transmission scheme that reduces the impact of packet reordering

and deals with uncertainties in asymmetric networks while using a coding technique to reduce long-tailed low

completion time under network asymmetry. [47] uses cloud live forensics to acquire and preserve the reliable

data in cloud computing systems by reducing Trusted Computing Base (TCB) size, collecting evidence directly

from the hardware, and protecting the evidence and other sensitive iles with Filesafe module. [57] uses an

optimization method whose individual node degrees are balanced iteratively based on the No-Regret learning

algorithm to increase the resilience against outside attacks for network topology.[2] uses an equivalent multilevel

programming approach for networks whose nodes with nonzero demand or supply are relatively sparse, based

on the recursive application of the equivalent bilevel formulation to facilitate an easy solution to the multilevel

programming formulation for tree-reducible networks.

Optimization for DML. [5] is an online polynomial-time algorithm for scheduling the arriving DML jobs and

deciding the adjusted numbers of concurrent workers and parameter servers for each job to maximize the overall

utility of all jobs. [62] is an asynchronous distributed machine learning framework called SIREN that uses a swarm

of stateless functions, controlled by a deep reinforcement learning scheduler, to achieve higher parallelism, higher

elasticity, and lower system coniguration overhead. [4] is a communication scheduler called PACE containing the

best tensor-preemptive communication schedule identifying and scheduling oracle that preemptively schedules

all-reduce tensors based on the DAG of DNN training, which guarantees maximal communication overlapping

over computation and high bandwidth utilization. [36] employs momentum correction, local gradient clipping,

momentum factor masking, and warm-up training to reduce the communication bandwidth while preserving

accuracy. [63] is a gradient aggregation algorithm that runs on BCube, instead of Fat-Tree topology to achieve

higher network performance and lower network cost. [61] is a scheduling system called Blink that uses spanning

trees to ind the optimal communication schedules based on tree structures that improve the eiciency of the

communication schedules, which can also be used to increase the robustness of gradient aggregation. [43] focuses

on the beneits of co-design of all-reduce algorithm and the network system. [25] focuses on a speciic kind of

DML, which is called Federated Learning(FL). It uses an alarming proactive technique to mitigate the efect of

malicious clients to provide a convergence guarantee to the DML tasks.

Optimization of all-reduce. [11] is a communication library for DML called BlueConnect that decomposes

a single all-reduce operation into a large number of parallelizable reduce-scatter and all-gather operations to

exploit the trade-of between latency and bandwidth and adapt to a variety of network conigurations. [32] is an

eicient and lexible all-reduce algorithm called FlexReduce for DML under asymmetric or irregular network

hierarchies. It deals with the heterogeneity of devices in a distributed system to mitigate the communication

overhead. [6] encodes its synthesis as a quantiier-free SMT formula and solves the formula with Z3-solver to ind

latency-optimal or bandwidth-optimal collectives. [9] analyzes the performance of MPI all-reduce and accelerate

the process with pipelined approach. [59] provides hierarchical all-reduce algorithm with pipelined approach,

ACM Trans. Multimedia Comput. Commun. Appl.

20 • Hongjian Shi, et al.

which is similar to 2DHRA[29]. [30] uses reduce_scatter and allgatherv to perform the all-reduce process, which

is similar to 2D-Torus[41]. [38] proposes a scalable fully-pipelined architecture that handles tasks like forwarding,

aggregation, and retransmission with no bandwidth loss. [16] focuses on custom operators and data types, with

sparse data and reproducible aggregation.

Optimization algorithms. For traditional optimization algorithms, there is enumeration algorithm[14]. [14]

samples all possible solutions from the solution space and inds the optimal one. It guarantees to ind the optimal

solution but is computationally expensive. [7] uses solvers for the problem but need careful formulation of the

scenario. It can obtain the optimal solution but takes a long time to ind an available solution. For heuristic

algorithms, there are a large number of algorithms, including greedy algorithm[14], Hill Climbing(HC)[51],

Simulated Annealing(SA)[18], Particle Swarm Optimization(PSO)[13], and Ant Colony Optimization(ACO)[17].

[14] simply chooses the best action according to the current state, ignoring the previous action, so it does not

guarantee to ind the global optimal but has the fastest speed. [51] originated from the greedy algorithm, but it

chooses the best solution according to a small range of possible solutions instead of the whole solution space. [18]

is an extension of Monte Carlo sampling. It has a high exploration rate at the beginning, and optimize the solution

by searching in its neighbors. [13] simulates the foraging action of birds. It initializes several particles that have

their location and velocity. The particles move towards the optimal solution with a better itness score according

to the information from all particles. [17] simulates the action of ants. It keeps track of the trajectories of each ant

and collects the quality of the trajectories to update the knowledge of all ants, which guides other ants to follow a

better trajectory. For AI optimization approaches, reinforcement learning algorithms, including REINFORCE[66],

DDPG[35], A3C[42], and PPO[50], are good choices. [66] is a basic Monte Carlo-based policy gradient algorithm

that samples an episode and updates the action possibility. [35] computes the action directly from the strategy

function, which deals with continuous action space. It is a deterministic strategy that is computationally cheaper.

[42] is based on the actor-critic method and experiences replay and multi-threading techniques to achieve higher

training speed and better convergence. [50] changes the original policy gradient algorithm to an of-policy

approach and introduces a penalty function to maintain the convergence quality.

First, for tasks, our approach focuses on a single gradient aggregation task instead of a group of jobs[5, 8],

computation time on each node[40], asymmetric networks[11, 32, 76], multilevel programming formulation for

tree-reducible networks[2], or network system co-design[43]. Second, for designing goal, RSGCM aims to increase

the robustness of gradient aggregation instead of other metrics like eiciency[6, 9, 30, 39, 59, 62], bandwidth

loss[38], connectivity[12, 23, 24, 67, 70], resilience of attacks on connectivity[57], convergence protection[25],

resource utilization[64], or cloud reliability[47]. Third, for input, our approach optimizes the communication

schedules based on a given physical topology, but not the tensor size[4, 36] or the number of active worker

node[72]. Fourth, for structures, our approach is based on ring-based all-reduce algorithms instead of tree-based

algorithms[61, 63].

6 CONCLUSION

In this paper, we have proposed Robust Searching-based Gradient Collaborative Management(RSGCM) in Intelli-

gent Transportation System, a gradient managing algorithm that can increase the robustness of the gradient

aggregation for MCC in ITS. It inds the near-optimal communication schedule to be performed on a given

connection matrix with a relatively acceptable time cost and acceptable performance. We use Monte Carlo Tree

Search to decide what action to take when facing certain data distributions. The environment can evaluate the

choice from the Monte Carlo Tree and update the decision-making agent. The experiments show that RSGCM can

restore the eiciency of the gradient aggregation within several training episodes and represent diferent scenarios

through the modiication of parameters. This algorithm has an identical value in a practical environment. We

ACM Trans. Multimedia Comput. Commun. Appl.

Robust Searching-based Gradient Collaborative Management in Intelligent Transportation System • 21

have the prediction that this kind of gradient managing algorithm might have its usage in the industrial ield of

ITS.

ACKNOWLEDGMENTS

This work was supported in part by National NSF of China (NO. 61872234, 61732010), Shanghai Key Laboratory of

Scalable Computing and Systems, Innovative Research Foundation of Ship General Performance (NO.25622114),

SJTU Library-Jiangsu Jiatu Future Library Smart Service Joint R&D Center and the Key Laboratory of PK System

Technologies Research of Hainan.

REFERENCES

[1] Samah Aloui and Abdulmotaleb El Saddik. 2022. MMSUM digital twins: A multi-view multi-modality summarization framework for

sporting events. ACM Transactions on Multimedia Computing, Communications, and Applications 18, 1 (2022), 1ś25.

[2] Qin Ba and Ketan Savla. 2017. Robustness of DC networks with controllable link weights. IEEE Transactions on Control of Network

Systems 5, 3 (2017), 1479ś1491.

[3] Baidu. 2016. Baidu-allreduce. https://github.com/baidu-research/baidu-allreduce

[4] Yixin Bao, Yanghua Peng, Yangrui Chen, and Chuan Wu. 2020. Preemptive all-reduce scheduling for expediting distributed DNN

training. In Proceedings of IEEE INFOCOM 2020 IEEE Conference on Computer Communications. 626ś635.

[5] Yixin Bao, Yanghua Peng, Chuan Wu, and Zongpeng Li. 2018. Online job scheduling in distributed machine learning clusters. In

Proceedings of IEEE INFOCOM 2018 IEEE Conference on Computer Communications. 495ś503.

[6] Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal Musuvathi, Todd Mytkowicz, Jacob Nelson, et al. 2021. Synthesizing optimal

collective algorithms. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. 62ś75.

[7] Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal Musuvathi, Todd Mytkowicz, Jacob Nelson, et al. 2021. Synthesizing optimal

collective algorithms. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. 62ś75.

[8] Gabriele Castellano, Flavio Esposito, and Fulvio Risso. 2019. A distributed orchestration algorithm for edge computing resources with

guarantees. In Proceedings of IEEE INFOCOM 2019-IEEE Conference on Computer Communications. 2548ś2556.

[9] Adrián Castelló, Enrique S Quintana-Ortí, and José Duato. 2021. Accelerating distributed deep neural network training with pipelined

MPI allreduce. Cluster Computing 24, 4 (2021), 3797ś3813.

[10] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. 2016. Revisiting distributed synchronous SGD. arXiv

preprint arXiv:1604.00981 (2016).

[11] Minsik Cho, Ulrich Finkler, Mauricio Serrano, David Kung, and Hillery Hunter. 2019. BlueConnect: Decomposing all-reduce for deep

learning on heterogeneous network hierarchy. IBM Journal of Research and Development 63, 6 (2019), 1ś1.

[12] Masaki Chujyo and Yukio Hayashi. 2021. A loop enhancement strategy for network robustness. Applied Network Science 6, 1 (2021),

1ś13.

[13] Maurice Clerc. 2010. Particle swarm optimization. Vol. 93.

[14] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Cliford Stein. 2009. Introduction to algorithms.

[15] Jacob Devlin, Mingwei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for

language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Vol. 1. 4171ś4186.

[16] Salvatore Di Girolamo, Andreas Kurth, Alexandru Calotoiu, Thomas Benz, Timo Schneider, Jakub Beránek, et al. 2020. PsPIN: A

high-performance low-power architecture for lexible in-network compute. arXiv preprint arXiv:2010.03536 (2020).

[17] Marco Dorigo. 2007. Ant colony optimization. Scholarpedia 2, 3 (2007), 1461.

[18] Kathryn Anne Dowsland and Jonathan Thompson. 2012. Simulated annealing. Handbook of natural computing (2012), 1623ś1655.

[19] Facebook. 2019. PyTorch. https://pytorch.org/docs/stable/index.html

[20] Message Passing Interface Forum. 2015. MPI: A Message-Passing Interface Standard Version 3.1. https://www.mpi-forum.org/docs/mpi-

3.1/mpi31-report.pdf

[21] Zan Gao, Yinming Li, and Shaohua Wan. 2020. Exploring deep learning for view-based 3D model retrieval. ACM Transactions on

Multimedia Computing, Communications, and Applications 16, 1 (2020), 1ś21.

[22] Google. 2021. TensorFlow. https://tensorlow.google.cn/guide

[23] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi, et al. 2009. BCube: A high performance, server-centric

network architecture for modular data centers. In Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication. 63ś74.

[24] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu Lu. 2008. Dcell: A scalable and fault-tolerant network

structure for data centers. In Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication. 75ś86.

ACM Trans. Multimedia Comput. Commun. Appl.

https://github.com/baidu-research/baidu-allreduce
https://pytorch.org/docs/stable/index.html
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://tensorflow.google.cn/guide

22 • Hongjian Shi, et al.

[25] Hanxi Guo, Hao Wang, Tao Song, Yang Hua, Zhangcheng Lv, Xiulang Jin, et al. 2021. Siren: Byzantine-robust federated learning via

proactive alarming. In Proceedings of the ACM Symposium on Cloud Computing. 47śś60.

[26] Roger W Hockney. 1994. The communication challenge for MPP: Intel Paragon and Meiko CS-2. Parallel Comput. 20, 3 (1994), 389ś398.

[27] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. 2017. Densely connected convolutional networks. In

Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. 4700ś4708.

[28] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou, et al. 2018. Highly scalable deep learning training

system with mixed-precision: Training imagenet in four minutes. arXiv preprint arXiv:1807.11205 (2018).

[29] Youhe Jiang, Huaxi Gu, Yunfeng Lu, and Xiaoshan Yu. 2020. 2D-HRA: Two-dimensional hierarchical ring-based all-reduce algorithm in

large-scale distributed machine learning. IEEE Access 8 (2020), 183488ś183494.

[30] Andreas Jocksch, Noé Ohana, Emmanuel Lanti, Eirini Koutsaniti, Vasileios Karakasis, and Laurent Villard. 2021. An optimisation of

allreduce communication in message-passing systems. Parallel Comput. 107 (2021), 102812.

[31] Norman P Jouppi, Clif Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, et al. 2017. In-datacenter performance

analysis of a tensor processing unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture. 1ś12.

[32] Jinho Lee, Inseok Hwang, Soham Shah, andMinsik Cho. 2020. FlexReduce: Flexible all-reduce for distributed deep learning on asymmetric

network topology. In Proceedings of 2020 57th ACM/IEEE Design Automation Conference. 1ś6.

[33] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu, Nathan R Tallent, et al. 2019. Evaluating modern GPU interconnect: PCIe,

NVLink, NV-SLI, NVSwitch and GPUdirect. IEEE Transactions on Parallel and Distributed Systems 31, 1 (2019), 94ś110.

[34] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski, et al. 2014. Scaling distributed machine

learning with the parameter server. In Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation.

583ś598.

[35] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, et al. 2015. Continuous control with deep

reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[36] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2017. Deep gradient compression: Reducing the communication

bandwidth for distributed training. arXiv preprint arXiv:1712.01887 (2017).

[37] Yangxin Lin, Ping Wang, and Meng Ma. 2017. Intelligent transportation system (ITS): Concept, challenge and opportunity. In Proceedings

of 2017 IEEE 3rd International Conference on Big Data Security on Cloud, IEEE International Conference on High Performance and Smart

Computing, and IEEE International Conference on Intelligent Data and Security. 167ś172.

[38] Yao Liu, Junyi Zhang, Shuo Liu, Qiaoling Wang, Wangchen Dai, and Ray Chak Chung Cheung. 2021. Scalable fully pipelined hardware

architecture for in-network aggregated AllReduce communication. IEEE Transactions on Circuits and Systems I: Regular Papers 68, 10

(2021), 4194ś4206.

[39] Ruhui Ma, Jian Li, Haibing Guan, Mingyuan Xia, and Xue Liu. 2015. EnDAS: Eicient encrypted data search as a mobile cloud service.

IEEE Transactions on Emerging Topics in Computing 3, 3 (2015), 372ś383.

[40] Derya Malak, Alejandro Cohen, and Muriel Médard. 2020. How to distribute computation in networks. In Proceedings of IEEE INFOCOM

2020-IEEE Conference on Computer Communications. 327ś336.

[41] Hiroaki Mikami, Hisahiro Suganuma, Yoshiki Tanaka, Yuichi Kageyama, et al. 2018. Massively distributed SGD: ImageNet/ResNet-50

training in a lash. arXiv preprint arXiv:1811.05233 (2018).

[42] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, et al. 2016. Asynchronous

methods for deep reinforcement learning. In International Conference on Machine Learning. 1928ś1937.

[43] Truong Thao Nguyen and Mohamed Wahib. 2021. An Allreduce algorithm and network co-design for large-scale training of distributed

deep learning. In Proceedings of 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing. 396ś405.

[44] NVIDIA. 2020. NVIDIA Collective Communication Library (NCCL) Documentation. https://docs.nvidia.com/deeplearning/nccl/user-

guide/docs/index.html

[45] NVIDIA. 2022. CUDA Toolkit Documentation. https://docs.nvidia.com/cuda/index.html

[46] Luo Qi. 2008. Research on intelligent transportation system technologies and applications. In Proceedings of 2008 Workshop on Power

Electronics and Intelligent Transportation System. 529ś531.

[47] Zhengwei Qi, Chengcheng Xiang, Ruhui Ma, Jian Li, Haibing Guan, and David S. L. Wei. 2017. ForenVisor: A tool for acquiring and

preserving reliable Data in Cloud Live Forensics. IEEE Transactions on Cloud Computing 5, 3 (2017), 443ś456.

[48] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, et al. 2015. Imagenet large scale visual recognition

challenge. International Journal of Computer Vision 115, 3 (2015), 211ś252.

[49] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt, et al. 2020. Mastering atari,

go, chess and shogi by planning with a learned model. Nature 588, 7839 (2020), 604ś609.

[50] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization algorithms. arXiv

preprint arXiv:1707.06347 (2017).

[51] Bart Selman and Carla P Gomes. 2006. Hill-climbing search. Encyclopedia of cognitive science 81 (2006), 82.

ACM Trans. Multimedia Comput. Commun. Appl.

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://docs.nvidia.com/cuda/index.html

Robust Searching-based Gradient Collaborative Management in Intelligent Transportation System • 23

[52] Alexander Sergeev and Mike Del Balso. 2018. Horovod: Fast and easy distributed deep learning in TensorFlow. arXiv preprint

arXiv:1802.05799 (2018).

[53] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, et al. 2016. Mastering the game of

Go with deep neural networks and tree search. Nature 529, 7587 (2016), 484ś489.

[54] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, et al. 2018. A general reinforcement

learning algorithm that masters chess, shogi, and Go through self-play. Science 362, 6419 (2018), 1140ś1144.

[55] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, et al. 2017. Mastering the game of go

without human knowledge. Nature 550, 7676 (2017), 354ś359.

[56] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for large-scale image recognition. In Proceedings of

the 3rd International Conference on Learning Representations.

[57] Insoo Sohn. 2019. Robustness enhancement of complex networks via No-Regret learning. ICT Express 5, 3 (2019), 163ś166.

[58] Rajeev Thakur, Rolf Rabenseifner, andWilliamGropp. 2005. Optimization of collective communication operations inMPICH. International

Journal of High Performance Computing Applications 19, 1 (2005), 49ś66.

[59] Truong Thao Nguyen, MohamedWahib, and Ryousei Takano. 2021. EicientMPI-AllReduce for large-scale deep learning on GPU-clusters.

Concurrency and Computation: Practice and Experience 33, 12 (2021), 5574.

[60] Shaohua Wan, Zan Gao, Hanwang Zhang, and Xiaojun Chang. 2021. Introduction to the special issue on ine-grained visual computing.

, 3 pages.

[61] Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Nikhil Devanur, Jorgen Thelin, and Ion Stoica. 2020. Blink: Fast and

generic collectives for distributed ML. Machine Learning and Systems 2 (2020), 172ś186.

[62] Hao Wang, Di Niu, and Baochun Li. 2019. Distributed machine learning with a serverless architecture. In Proceedings of IEEE INFOCOM

2019 IEEE Conference on Computer Communications. 1288ś1296.

[63] Songtao Wang, Dan Li, Yang Cheng, Jinkun Geng, Yanshu Wang, Shuai Wang, et al. 2018. BML: A high-performance, low-cost gradient

synchronization algorithm for dml training. In Proceedings of the 32nd International Conference on Neural Information Processing Systems.

4243ś4253.

[64] Su Wang, Yichen Ruan, Yuwei Tu, Satyavrat Wagle, Christopher G Brinton, and Carlee Joe-Wong. 2021. Network-aware optimization of

distributed learning for fog computing. IEEE/ACM Transactions on Networking (2021).

[65] Pijika Watcharapichat, Victoria Lopez Morales, Raul Castro Fernandez, and Peter Pietzuch. 2016. Ako: Decentralised deep learning with

partial gradient exchange. In Proceedings of the 7th ACM Symposium on Cloud Computing. 84ś97.

[66] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning 8,

3 (1992), 229ś256.

[67] Xuhua Yang, Wenhao Feng, Guang Chen, Lei Wang, Tao Zou, and Peng Jiang. 2020. Enhancing coupled networks robustness via

removing key fragile dependency links. IEEE Transactions on Circuits and Systems II: Express Briefs 68, 3 (2020), 953ś957.

[68] Chris Ying, Sameer Kumar, Dehao Chen, Tao Wang, and Youlong Cheng. 2018. Image classiication at supercomputer scale. arXiv

preprint arXiv:1811.06992 (2018).

[69] Jiaru Zhang, Yang Hua, Tao Song, Hao Wang, Zhengui Xue, Ruhui Ma, et al. 2022. Improving bayesian neural networks by adversarial

sampling. (2022).

[70] Jianan Zhang, Hyang-Won Lee, and Eytan Modiano. 2019. On the robustness of distributed computing networks. In Proceedings of 2019

15th International Conference on the Design of Reliable Communication Networks. 122ś129.

[71] Wei Zhang, Ting Yao, Shiai Zhu, and Abdulmotaleb El Saddik. 2019. Deep learningśbased multimedia analytics: a review. ACM

Transactions on Multimedia Computing, Communications, and Applications 15, 1s (2019), 1ś26.

[72] Xiaoxi Zhang, Jianyu Wang, Gauri Joshi, and Carlee Joe-Wong. 2020. Machine learning on volatile instances. In Proceedings of IEEE

INFOCOM 2020-IEEE Conference on Computer Communications. 139ś148.

[73] Yin Zhang, Xiao Ma, Jing Zhang, M Shamim Hossain, Ghulam Muhammad, and Syed Umar Amin. 2019. Edge intelligence in the

cognitive Internet of Things: Improving sensitivity and interactivity. IEEE Network 33, 3 (2019), 58ś64.

[74] Huasha Zhao and John Canny. 2013. Butterly mixing: Accelerating incremental-update algorithms on clusters. In Proceedings of the

2013 SIAM International Conference on Data Mining. 785ś793.

[75] Yi Zheng, Yong Zhou, Jiaqi Zhao, Ying Chen, Rui Yao, Bing Liu, and Abdulmotaleb El Saddik. 2022. Clustering matters: Sphere feature

for fully unsupervised person re-identiication. ACM Transactions on Multimedia Computing, Communications, and Applications 18, 4

(2022), 1ś18.

[76] Shaojun Zou, Jiawei Huang, Jianxin Wang, and Tian He. 2019. Improving TCP robustness over asymmetry with reordering marking and

coding in data centers. In Proceedings of 2019 IEEE 39th International Conference on Distributed Computing Systems. 57ś67.

ACM Trans. Multimedia Comput. Commun. Appl.

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Robust Searching-based Gradient Aggregation(RSGCM)
	3.1 Searching Space
	3.2 Monte Carlo Tree Search (MCTS)
	3.3 Environment

	4 Evaluation
	4.1 Settings of hyperparameters
	4.2 Major experimental results
	4.3 Influence of parameters

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

