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Federated Learning (FL)
• In practice, clients generate their specific private data, as shown by the colorful icons here. 
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Statistical Heterogeneity Issue 
• Client-specific private data brings the statistical heterogeneity issue 
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Statistical Heterogeneity Issue 
• With heterogeneous data, clients’ local training turns the received global model to client-specific 

local models
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Representation bias phenomenon
• After local training, the feature representations are biased to client-specific domains
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Train
Before After

t-SNE visualization for representations before/after local training in FedAvg. 
We use color and shape to distinguish labels and clients, respectively.

Representations form client-specific domains after local training. 

(a) Before local training (b) After local training



Representation degeneration phenomenon
• At the same time, representations’ quality is also degenerated
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Per-layer MDL (bits) for representations before/after local training in FedAvg.
A large MDL value means low representation quality.



Personalized FL (pFL)
• pFL methods learn personalized modules, but

Page 7



Personalized FL (pFL)
• pFL methods learn personalized modules, but

• feature extractors are still trained with only biased local data domains on clients, leading to
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Personalized FL (pFL)
• pFL methods learn personalized modules, but

• feature extractors are still trained with only biased local data domains on clients, leading to
• representation bias and representation degeneration during local training.
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Our Domain Bias Eliminator (DBE)
• Thus, we propose DBE to eliminate domain bias in representation space via two modules:
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Our Domain Bias Eliminator (DBE)
• Thus, we propose DBE to eliminate domain bias in representation space via two modules:

• Personalized Representation Bias Memory (PRBM)
• Mean Regularization (MR)
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Personalized Representation Bias Memory (PRBM) 
• PRBM stores personalized (biased) representation information (   ) for each client, and 

• make the remaining information (   ) to be global. 
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Personalized Representation Bias Memory (PRBM) 
• PRBM stores personalized (biased) representation information (   ) for each client, and 

• make the remaining information (   ) to be global. 
• Formally, 
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Personalized Representation Bias Memory (PRBM) 
• PRBM stores personalized (biased) representation information (   ) for each client, and 

• make the remaining information (   ) to be global. 
• Formally, 

Page 15

Local loss (original):

Local loss (with PRBM):

⨁Feature 
Extractor Classifier



Personalized Representation Bias Memory (PRBM) 
• PRBM stores personalized (biased) representation information (   ) for each client, and 

• make the remaining information (   ) to be global. 
• Formally, 
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View the PRBM as a personalized translation transformation                                  :

Local loss (with PRBM):
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Personalized Representation Bias Memory (PRBM) 
• PRBM stores personalized (biased) representation information (   ) for each client, and 

• make the remaining information (   ) to be global. 
• Formally, 
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Local loss (original):

View the PRBM as a personalized translation transformation                                  :

Local loss (with PRBM):
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Personalized Representation Bias Memory (PRBM) 
• We make PRBM to be trainable to learn personalized representation information
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Personalized Representation Bias Memory (PRBM) 
• We make PRBM to be trainable to learn personalized representation information

• However, trainable PRBM requires guidance to recognize the global and personalized information
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DBE: PRBM + Mean Regularization (MR)
• MR explicitly guides the local feature extractor to generate     with global information, by 

• further regularize     to a globally shared client-invariant mean
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DBE: PRBM + Mean Regularization (MR)
• MR explicitly guides the local feature extractor to generate     with global information, by 

• further regularize     to a globally shared client-invariant mean
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DBE: PRBM + Mean Regularization (MR)
• MR explicitly guides the local feature extractor to generate     with global information, by 

• further regularize     to a globally shared client-invariant mean
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DBE: PRBM + Mean Regularization (MR)
• MR explicitly guides the local feature extractor to generate     with global information, by 

• further regularize     to a globally shared client-invariant mean
• Formally, 
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DBE: PRBM + Mean Regularization (MR)
• MR explicitly guides the local feature extractor to generate     with global information, by 
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DBE: PRBM + Mean Regularization (MR)
• MR explicitly guides the local feature extractor to generate     with global information, by 

• further regularize     to a globally shared client-invariant mean
• Formally, 
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Local loss (with PRBM):

Local loss (with PRBM and MR):

Final loss for client 𝒊𝒊
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Improved Bi-directional Knowledge Transfer
• DBE can promote bi-directional knowledge transfer between server and client with

• Theoretical guarantee
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Improved Bi-directional Knowledge Transfer
• Local-to-global knowledge transfer
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Improved Bi-directional Knowledge Transfer
• Global-to-local knowledge transfer
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Please refer to our paper for proofs.



Extensive Experiments
• How to Split the Model?
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Extensive Experiments
• Eliminate Representation Bias for the First Level of Representation after local training
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Extensive Experiments
• DBE can greatly improve existing FL methods in both generalization and personalization abilities
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Extensive Experiments
• DBE promotes traditional FL methods in both MDL and accuracy by at most 

• -22.35% in MDL (bits) and 
• +32.30 in accuracy (%)
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Extensive Experiments
• DBE greatly improves FedAvg at most +47.40 on Cifar100 in the pathological setting and 

• outperforms the SOTA pFL methods by up to +11.36 on Cifar100†
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Extensive Experiments
• Other experiments also show the effectiveness and efficiency of our DBE.
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Eliminating Domain Bias for 
Federated Learning in
Representation Space

Thanks!

Paper with code: https://github.com/TsingZ0/DBE

E-mail: tsingz@sjtu.edu.cn
Paper with code

https://github.com/TsingZ0/DBE
mailto:tsingz@sjtu.edu.cn
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