Eliminating Domain Bias for Federated Learning in Representation Space

Jianqing Zhang1
Yang Hua2
Jian Cao1
Hao Wang3

Tao Song1
Zhengui Xue1
Ruhui Ma1
Haibing Guan1

1Shanghai Jiao Tong University
2Queen's University Belfast
3LSU
Federated Learning (FL)

- In practice, clients generate their specific private data, as shown by the colorful icons here.
Statistical Heterogeneity Issue

- Client-specific private data brings the *statistical heterogeneity* issue
Statistical Heterogeneity Issue

• With heterogeneous data, clients’ local training turns the received global model to client-specific local models
Representation bias phenomenon

- After local training, the feature representations are **biased** to client-specific domains

![t-SNE visualization for representations before/after local training in FedAvg.](image)

We use *color* and *shape* to distinguish *labels* and *clients*, respectively. Representations form *client-specific domains* after local training.
Representation degeneration phenomenon

• At the same time, representations’ quality is also *degenerated*

Per-layer MDL (bits) for representations before/after local training in FedAvg.

A large MDL value means low representation quality.
Personalized FL (pFL)

- pFL methods learn personalized modules, but
Personalized FL (pFL)

• pFL methods learn personalized modules, but
• feature extractors are still trained with only biased local data domains on clients, leading to

![Diagram showing biased and not biased feature extractors before local training.](image-url)
Personalized FL (pFL)

• pFL methods learn personalized modules, but
• feature extractors are still trained with only biased local data domains on clients, leading to
• representation bias and representation degeneration during local training.
Our Domain Bias Eliminator (DBE)

• Thus, we propose DBE to *eliminate domain bias in representation space* via two modules:
Our Domain Bias Eliminator (DBE)

- Thus, we propose DBE to *eliminate domain bias in representation space* via two modules:
 - Personalized Representation Bias Memory (PRBM)
 - Mean Regularization (MR)
Personalized Representation Bias Memory (PRBM)

- PRBM stores personalized (biased) representation information (\tilde{z}_i^p) for each client, and
- make the remaining information (z_i) to be global.

![Diagram of Local model (original)]

![Diagram of Local model (with PRBM)]
Personalized Representation Bias Memory (PRBM)

- PRBM stores personalized *(biased)* representation information \((\mathbf{z}_i^P) \) for each client, and
- make the remaining information \((\mathbf{z}_i^G) \) to be global.

Local model (with PRBM)
Personalized Representation Bias Memory (PRBM)

- PRBM stores personalized (biased) representation information (z_i^p) for each client, and
- make the remaining information (z_i^g) to be global.
- Formally,

\[
\mathcal{L}_{D_i}(\theta) := \mathbb{E}_{(x_i, y_i) \sim D_i} [\ell(f(x_i; \theta^f), \theta^h; y_i)]
\]
Personalized Representation Bias Memory (PRBM)

- **PRBM** stores personalized *(biased)* representation information \((\bar{z}_i^p)\) for each client, and
- make the remaining information \((z_i^p)\) to be global.
- Formally,

Local loss (original):

\[
\mathcal{L}_{D_i}(\theta) := \mathbb{E}_{(x_i,y_i) \sim D_i} [\ell(h(f(x_i; \theta^f); \theta^h), y_i)]
\]

Local loss (with **PRBM**):

\[
\mathcal{L}_{D_i}(\theta_i) := \mathbb{E}_{(x_i,y_i) \sim D_i} [\ell(h(f(x_i; \theta^f) + \bar{z}_i^p; \theta^h), y_i)]
\]
Personalized Representation Bias Memory (PRBM)

- PRBM stores personalized (biased) representation information (\bar{z}_i^p) for each client, and
- make the remaining information (z_i^p) to be global.
- Formally,

Local loss (original):

$$\mathcal{L}_{D_i}(\theta) := \mathbb{E}_{(x_i,y_i) \sim D_i} [\ell(h(f(x_i;\theta^f);\theta^h), y_i)]$$

Local loss (with PRBM):

$$\mathcal{L}_{D_i}(\theta_i) := \mathbb{E}_{(x_i,y_i) \sim D_i} [\ell(h(f(x_i;\theta^f) + \bar{z}_i^p;\theta^h), y_i)]$$

View the PRBM as a personalized translation transformation $\text{PRBM} : \mathcal{Z} \mapsto \bar{\mathcal{Z}}$:
Personalized Representation Bias Memory (PRBM)

- PRBM stores personalized *(biased)* representation information \((\tilde{z}_i^p)\) for each client, and
- make the remaining information \((z_i^p)\) to be global.
- Formally,

 Local loss (original):
 \[
 \mathcal{L}_{D_i}(\theta) := \mathbb{E}_{(x_i,y_i) \sim D_i} [\ell(h(f(x_i; \theta^f); \theta^h), y_i)]
 \]

 Local loss (with PRBM):
 \[
 \mathcal{L}_{D_i}(\theta_i) := \mathbb{E}_{(x_i,y_i) \sim D_i} [\ell(h(f(x_i; \theta^f) + \tilde{z}_i^p; \theta^h), y_i)]
 \]

 View the PRBM as a personalized translation transformation **PRBM** : \(\mathcal{Z} \mapsto \mathcal{Z}\):

 \[
 \mathcal{L}_{D_i}(\theta_i) := \mathbb{E}_{(x_i,y_i) \sim D_i} [\ell(h(\text{PRBM}(f(x_i; \theta^f); \tilde{z}_i^p); \theta^h), y_i)]
 \]
Personalized Representation Bias Memory (PRBM)

• We make PRBM to be trainable to learn personalized representation information
Personalized Representation Bias Memory (PRBM)

- We make PRBM to be trainable to learn personalized representation information
- However, trainable PRBM requires guidance to recognize the global and personalized information
DBE: PRBM + Mean Regularization (MR)

- MR explicitly guides the local feature extractor to generate z_i^g with global information, by
- further regularize z_i^g to a globally shared *client-invariant mean* \bar{z}^g
DBE: PRBM + Mean Regularization (MR)

- MR explicitly guides the local feature extractor to generate z_i^g with global information, by
- further regularize z_i^g to a globally shared *client-invariant mean* z^g

A consensus obtained during the initialization period before FL

Local model (with PRBM and MR)
DBE: **PRBM + Mean Regularization (MR)**

- MR explicitly guides the local feature extractor to generate z^g_i with global information, by
- further regularize z^g_i to a globally shared **client-invariant mean** \hat{z}^g
DBE: PRBM + Mean Regularization (MR)

- MR explicitly guides the local feature extractor to generate z_i^g with global information, by
- further regularize z_i^g to a globally shared \textit{client-invariant mean} \bar{z}^g
- Formally,

Local loss (with PRBM):

$$L_{D_i}(\theta_i) := \mathbb{E}_{(x_i, y_i) \sim D_i}[\ell(h(\text{PRBM}(f(x_i; \theta^f); \bar{z}_i^p); \theta^h), y_i)]$$
DBE: PRBM + Mean Regularization (MR)

• MR explicitly guides the local feature extractor to generate z_i^g with global information, by
• further regularize z_i^g to a globally shared client-invariant mean \bar{z}^g
• Formally,

Local loss (with PRBM):
\[
\mathcal{L}_{D_i}(\theta_i) := \mathbb{E}_{(x_i, y_i) \sim D_i} [\ell(h(\text{PRBM}(f(x_i; \theta^f); \bar{z}_i^p); \theta^h), y_i)]
\]

Local loss (with PRBM and MR):
\[
\mathcal{L}_{D_i}(\theta_i) := \mathbb{E}_{(x_i, y_i) \sim D_i} [\ell(h(\text{PRBM}(f(x_i; \theta^f); \bar{z}_i^p); \theta^h), y_i)] + \kappa \cdot \text{MR}(\bar{z}_i^g, \bar{z}_g)
\]
DBE: PRBM + Mean Regularization (MR)

- MR explicitly guides the local feature extractor to generate z^g_i with global information, by
- further regularize z^g_i to a globally shared *client-invariant mean*.
- Formally,

Local loss (with PRBM):
\[
\mathcal{L}_{D_i}(\theta_i) := \mathbb{E}_{(x_i, y_i) \sim D_i} [\ell(h(\text{PRBM}(f(x_i; \theta^f_i); \tilde{z}_i^p); \theta^h_i), y_i)]
\]

Local loss (with PRBM and MR):
\[
\mathcal{L}_{D_i}(\theta_i) := \mathbb{E}_{(x_i, y_i) \sim D_i} [\ell(h(\text{PRBM}(f(x_i; \theta^f_i); \tilde{z}_i^p); \theta^h_i), y_i)] + \kappa \cdot \text{MR}(\tilde{z}_i^g, \tilde{z}^g)
\]

Final loss for client i
Improved Bi-directional Knowledge Transfer

• DBE can promote *bi-directional knowledge transfer* between server and client with
• *Theoretical guarantee*
Improved Bi-directional Knowledge Transfer

- **Local-to-global** knowledge transfer

Corollary 1. Consider a local data domain D_i and a virtual global data domain D for client i and the server, respectively. Let $D_i = \langle U_i, c^* \rangle$ and $D = \langle U, c^* \rangle$, where $c^*: \mathcal{X} \mapsto \mathcal{Y}$ is a ground-truth labeling function. Let H be a hypothesis space of VC dimension d and $h: \mathcal{Z} \mapsto \mathcal{Y}, \forall h \in H$. When using DBE, given a feature extraction function $F^g: \mathcal{X} \mapsto \mathcal{Z}$ that shared between D_i and D, a random labeled sample of size m generated by applying F^g to a random sample from U_i labeled according to c^*, then for every $h^g \in H$, with probability at least $1 - \delta$:

$$
\mathcal{L}_D(h^g) \leq \mathcal{L}_{D_i}(h^g) + \sqrt{\frac{4}{m}(d \log \frac{2em}{d} + \log \frac{4}{\delta})} + d_H(\tilde{U}_i^g, \mathcal{U}^g) + \lambda_i,
$$

where \mathcal{L}_{D_i} is the empirical loss on D_i, e is the base of the natural logarithm, and $d_H(\cdot, \cdot)$ is the H-divergence between two distributions. $\lambda_i := \min_{h^g} \mathcal{L}_D(h^g) + \mathcal{L}_{D_i}(h^g)$, $\tilde{U}_i^g \subseteq \mathcal{Z}$, $\mathcal{U}^g \subseteq \mathcal{Z}$, and $d_H(\tilde{U}_i^g, \mathcal{U}^g) \leq d_H(\tilde{U}_i, \mathcal{U})$. \tilde{U}_i^g and \mathcal{U}^g are the induced distributions of U_i and U under F^g, respectively. U_i and U are the induced distributions of U_i and U under F, respectively. F is the feature extraction function in the original FedAvg without DBE.
Improved Bi-directional Knowledge Transfer

- **Global-to-local** knowledge transfer

Corollary 2. Let \mathcal{D}_i, \mathcal{D}, \mathcal{F}^g, and λ_i defined as in Corollary 1. Given a translation transformation function $\text{PRBM} : \mathcal{Z} \mapsto \mathcal{Z}$ that shared between \mathcal{D}_i and virtual \mathcal{D}, a random labeled sample of size m generated by applying \mathcal{F}' to a random sample from \mathcal{U}_i labeled according to c^*, $\mathcal{F}' = \text{PRBM} \circ \mathcal{F}^g : \mathcal{X} \mapsto \mathcal{Z}$, then for every $h' \in \mathcal{H}$, with probability at least $1 - \delta$:

$$
\mathcal{L}_{\mathcal{D}_i}(h') \leq \mathcal{L}_{\mathcal{D}}(h') + \sqrt{\frac{4}{m} (d \log \frac{2em}{d} + \log \frac{4}{\delta})} + d_H(\tilde{\mathcal{U}}', \tilde{\mathcal{U}}_i') + \lambda_i,
$$

where $d_H(\tilde{\mathcal{U}}', \tilde{\mathcal{U}}_i') = d_H(\tilde{\mathcal{U}}^g, \tilde{\mathcal{U}}^g_i) \leq d_H(\tilde{\mathcal{U}}, \tilde{\mathcal{U}}_i) = d_H(\tilde{\mathcal{U}}_i, \tilde{\mathcal{U}})$. $\tilde{\mathcal{U}}'$ and $\tilde{\mathcal{U}}_i'$ are the induced distributions of \mathcal{U} and \mathcal{U}_i under \mathcal{F}', respectively.

Please refer to our paper for proofs.
Extensive Experiments

- How to Split the Model?

Table 1: The MDL (bits, ↓) of layer-wise representations, test accuracy (%, ↑), and the number of trainable parameters (↓) in PRBM when adding DBE to FedAvg on Tiny-ImageNet using 4-layer CNN in the practical setting. We also show corresponding results for the close pFL methods. For FedBABU, “[36.82]” indicates the test accuracy after post-FL fine-tuning for 10 local epochs.

<table>
<thead>
<tr>
<th>Metrics</th>
<th>MDL</th>
<th>Accuracy</th>
<th>Param.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONV1→CONV2</td>
<td>CONV2→FC1</td>
<td>FC1→FC2</td>
</tr>
<tr>
<td>FedPer [3]</td>
<td>5143</td>
<td>4574</td>
<td>3885</td>
</tr>
<tr>
<td>FedRep [20]</td>
<td>5102</td>
<td>4237</td>
<td>3922</td>
</tr>
<tr>
<td>FedRoD [14]</td>
<td>5063</td>
<td>4264</td>
<td>3783</td>
</tr>
<tr>
<td>FedBABU [61]</td>
<td>5083</td>
<td>4181</td>
<td>3948</td>
</tr>
<tr>
<td>Original (FedAvg)</td>
<td>5081</td>
<td>4151</td>
<td>3844</td>
</tr>
</tbody>
</table>

CONV1→DBE→CONV2	4650 (-8.48%)	4105 (-1.11%)	3679 (-4.29%)	3756 (-3.57%)	21.81 (+2.35)	28800
CONV2→DBE→FC1	4348 (-14.43%)	3716 (-10.48%)	3463 (-9.91%)	3602 (-7.52%)	47.03 (+27.57)	10816
FC1→DBE→FC2	4608 (-9.31%)	**3689 (-11.13%)**	3625 (-5.70%)	3688 (-5.31%)	43.32 (+23.86)	512
Extensive Experiments

• Eliminate Representation Bias for the First Level of Representation \textit{after} local training

Figure 3: t-SNE visualization for representations on Tiny-ImageNet (200 labels). “B” and “A” denote “before local training” and “after local training”, respectively. We use \textit{color} and \textit{shape} to distinguish \textit{labels} and \textit{clients}, respectively. \textit{Best viewed in color and zoom-in.}
Extensive Experiments

• DBE can greatly improve existing FL methods in both generalization and personalization abilities
Extensive Experiments

- **DBE** promotes traditional FL methods in both MDL and accuracy by at most
 - -22.35% in MDL (bits) and
 - +32.30 in accuracy (%)

Table 4: The MDL (bits, ↓) and test accuracy (%, ↑) before and after adding DBE to traditional FL methods on Cifar100, Tiny-ImageNet, and AG News in the practical setting. TINY and TINY* represent using 4-layer CNN and ResNet-18 on Tiny-ImageNet, respectively.

<table>
<thead>
<tr>
<th>Metrics</th>
<th>MDL</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cifar100</td>
<td>TINY</td>
</tr>
<tr>
<td>SCAFFOLD [38]</td>
<td>1499</td>
<td>3661</td>
</tr>
<tr>
<td>FedProx [46]</td>
<td>1523</td>
<td>3701</td>
</tr>
<tr>
<td>MOON [45]</td>
<td>1516</td>
<td>3696</td>
</tr>
<tr>
<td>FedGen [96]</td>
<td>1506</td>
<td>3675</td>
</tr>
<tr>
<td>SCAFFOLD+DBE</td>
<td>1434</td>
<td>3549</td>
</tr>
<tr>
<td>FedProx+DBE</td>
<td>1439</td>
<td>3587</td>
</tr>
<tr>
<td>MOON+DBE</td>
<td>1432</td>
<td>3580</td>
</tr>
<tr>
<td>FedGen+DBE</td>
<td>1426</td>
<td>3563</td>
</tr>
</tbody>
</table>
Extensive Experiments

- DBE greatly improves FedAvg at most $+47.40$ on Cifar100 in the pathological setting and
- outperforms the SOTA pFL methods by up to $+11.36$ on Cifar100

Table 5: The test accuracy ($\%$, \uparrow) of pFL methods in two statistically heterogeneous settings. Cifar100\dagger represents the experiment with 100 clients and joining ratio $\rho = 0.5$ on Cifar100.

<table>
<thead>
<tr>
<th>Settings</th>
<th>Pathological setting</th>
<th>Practical setting</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FMNIST</td>
<td>Cifar100</td>
<td>TINY</td>
<td>FMNIST</td>
<td>Cifar100</td>
<td>Cifar100\dagger</td>
<td>TINY</td>
<td>TINY*</td>
</tr>
<tr>
<td>Per-FedAvg [22]</td>
<td>99.18</td>
<td>56.80</td>
<td>28.06</td>
<td>95.10</td>
<td>44.28</td>
<td>38.28</td>
<td>25.07</td>
<td>21.81</td>
</tr>
<tr>
<td>pFedMe [67]</td>
<td>99.35</td>
<td>58.20</td>
<td>27.71</td>
<td>97.25</td>
<td>47.34</td>
<td>31.13</td>
<td>26.93</td>
<td>33.44</td>
</tr>
<tr>
<td>Ditto [47]</td>
<td>99.44</td>
<td>67.23</td>
<td>39.90</td>
<td>97.47</td>
<td>52.87</td>
<td>39.01</td>
<td>32.15</td>
<td>35.92</td>
</tr>
<tr>
<td>FedPer [3]</td>
<td>99.47</td>
<td>63.53</td>
<td>39.80</td>
<td>97.44</td>
<td>49.63</td>
<td>41.21</td>
<td>33.84</td>
<td>38.45</td>
</tr>
<tr>
<td>FedRep [20]</td>
<td>99.56</td>
<td>67.56</td>
<td>40.85</td>
<td>97.56</td>
<td>52.39</td>
<td>41.51</td>
<td>37.27</td>
<td>39.95</td>
</tr>
<tr>
<td>FedRoD [14]</td>
<td>99.52</td>
<td>62.30</td>
<td>37.95</td>
<td>97.52</td>
<td>50.94</td>
<td>48.56</td>
<td>36.43</td>
<td>37.99</td>
</tr>
<tr>
<td>FedBABU [61]</td>
<td>99.41</td>
<td>66.85</td>
<td>40.72</td>
<td>97.46</td>
<td>55.02</td>
<td>52.07 **</td>
<td>36.82</td>
<td>34.50</td>
</tr>
<tr>
<td>APFL [21]</td>
<td>99.41</td>
<td>64.26</td>
<td>36.47</td>
<td>97.25</td>
<td>46.74</td>
<td>39.47</td>
<td>34.86</td>
<td>35.81</td>
</tr>
<tr>
<td>APPLE [52]</td>
<td>99.30</td>
<td>65.80</td>
<td>36.22</td>
<td>97.06</td>
<td>53.22</td>
<td>—</td>
<td>35.04</td>
<td>39.93</td>
</tr>
<tr>
<td>FedAvg+DBE</td>
<td>99.74</td>
<td>73.38</td>
<td>42.89</td>
<td>97.69</td>
<td>64.39</td>
<td>63.43</td>
<td>43.32</td>
<td>42.98</td>
</tr>
</tbody>
</table>
Extensive Experiments

- Other experiments also show the **effectiveness** and **efficiency** of our DBE.

<table>
<thead>
<tr>
<th>Items</th>
<th>Heterogeneity</th>
<th>pFL+MR</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β = 0.01</td>
<td>β = 0.5</td>
<td>β = 5</td>
</tr>
<tr>
<td></td>
<td>Accuracy</td>
<td>Improvement</td>
<td>Total time</td>
</tr>
<tr>
<td>Per-FedAvg [22]</td>
<td>39.39</td>
<td>21.14</td>
<td>12.08</td>
</tr>
<tr>
<td>pFedMe [67]</td>
<td>41.45</td>
<td>17.48</td>
<td>4.03</td>
</tr>
<tr>
<td>Ditto [47]</td>
<td>50.62</td>
<td>18.98</td>
<td>21.79</td>
</tr>
<tr>
<td>FedPer [3]</td>
<td>51.83</td>
<td>17.31</td>
<td>9.61</td>
</tr>
<tr>
<td>FedRoD [14]</td>
<td>49.17</td>
<td>23.23</td>
<td>16.71</td>
</tr>
<tr>
<td>FedBABU [61]</td>
<td>53.97</td>
<td>23.08</td>
<td>15.42</td>
</tr>
<tr>
<td>APFL [21]</td>
<td>49.96</td>
<td>23.31</td>
<td>16.12</td>
</tr>
<tr>
<td>FedFomo [89]</td>
<td>46.36</td>
<td>11.59</td>
<td>14.86</td>
</tr>
<tr>
<td>APPLE [52]</td>
<td>47.89</td>
<td>24.24</td>
<td>17.79</td>
</tr>
<tr>
<td>FedAvg</td>
<td>15.70</td>
<td>21.14</td>
<td>21.71</td>
</tr>
<tr>
<td>FedAvg+DBE</td>
<td>57.52</td>
<td>32.61</td>
<td>25.55</td>
</tr>
</tbody>
</table>
Eliminating Domain Bias for Federated Learning in Representation Space

Paper with code: https://github.com/TsingZ0/DBE
E-mail: tsingz@sjtu.edu.cn

Thanks!