Eliminating Domain Bias for Federated Learning in Representation Space

Jianqing Zhang¹

Yang Hua²

Hao Wang³

Tao Song¹

Zhengui Xue¹

Ruhui Ma¹

Jian Cao¹

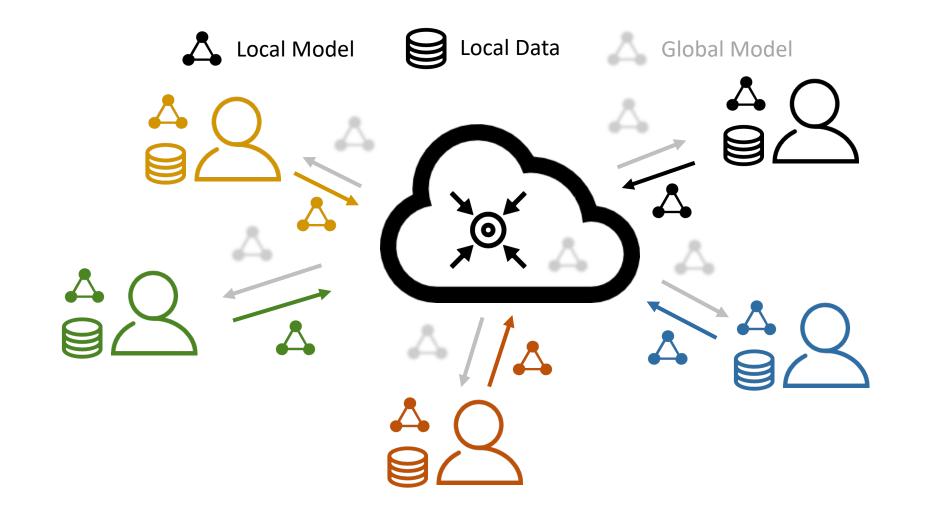
Haibing Guan¹

Federated Learning (FL)

• In practice, clients generate their specific private data, as shown by the colorful icons here.

Statistical Heterogeneity Issue

• Client-specific private data brings the *statistical heterogeneity* issue

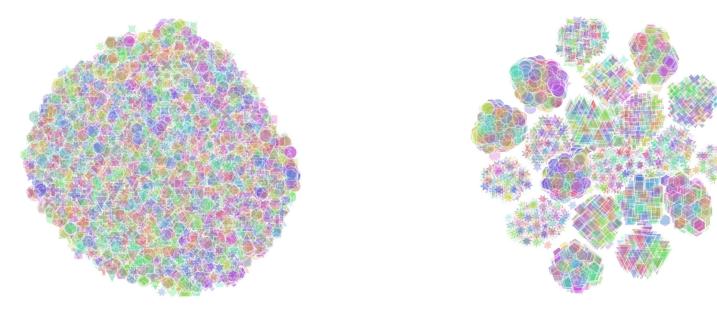


Statistical Heterogeneity Issue

• With heterogeneous data, clients' local training turns the received global model to client-specific local models

Representation bias phenomenon

• After local training, the feature representations are **biased** to client-specific domains



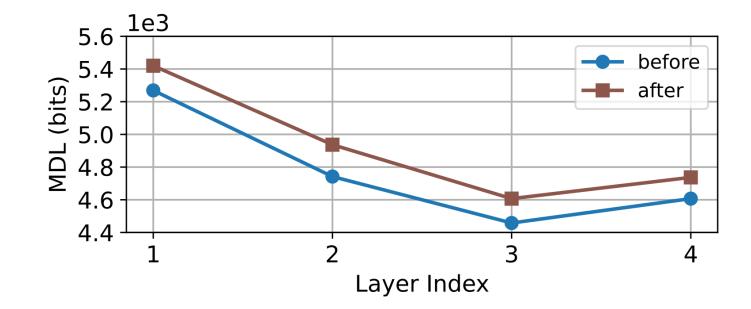
(a) Before local training

(b) After local training

t-SNE visualization for representations before/after local training in FedAvg. We use *color* and *shape* to distinguish *labels* and *clients*, respectively. Representations form client-specific domains after local training.

Representation degeneration phenomenon

• At the same time, representations' quality is also *degenerated*



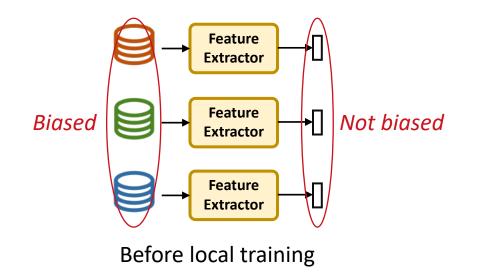
Per-layer MDL (bits) for representations before/after local training in FedAvg. A large MDL value means low representation quality.

Personalized FL (pFL)

• pFL methods learn personalized modules, but

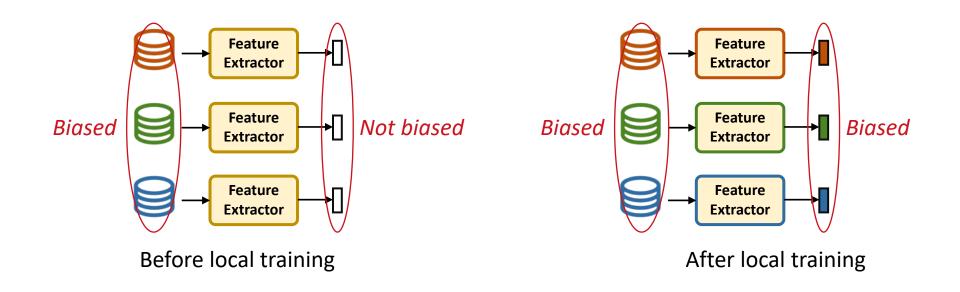
Personalized FL (pFL)

- pFL methods learn personalized modules, but
- feature extractors are still trained with only biased local data domains on clients, leading to



Personalized FL (pFL)

- pFL methods learn personalized modules, but
- feature extractors are still trained with only biased local data domains on clients, leading to
- *representation bias* and *representation degeneration* during local training.



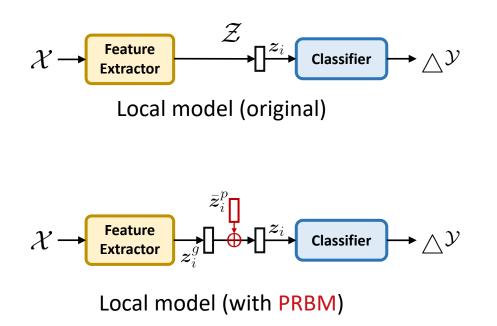
Our Domain Bias Eliminator (DBE)

• Thus, we propose **DBE** to *eliminate domain bias in representation space* via two modules:

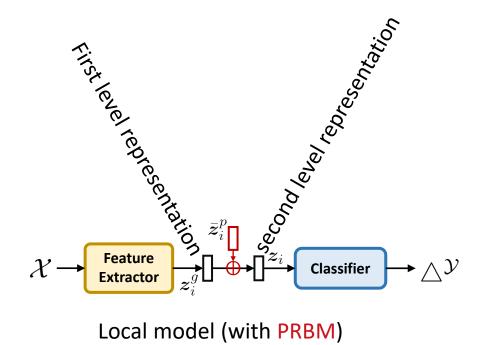
Our Domain Bias Eliminator (DBE)

- Thus, we propose **DBE** to *eliminate domain bias in representation space* via two modules:
 - Personalized Representation Bias Memory (PRBM)
 - Mean Regularization (MR)

- PRBM stores personalized (*biased*) representation information (\bar{z}_i^p) for each client, and
- make the remaining information (z_i^g) to be global.



- PRBM stores personalized (*biased*) representation information (\bar{z}_i^p) for each client, and
- make the remaining information (z_i^g) to be global.



- PRBM stores personalized (*biased*) representation information (\bar{z}_i^p) for each client, and
- make the remaining information (z_i^g) to be global.
- Formally,

Local loss (original):

$$\mathcal{L}_{\mathcal{D}_i}(\boldsymbol{\theta}) := \mathbb{E}_{(\boldsymbol{x}_i, y_i) \sim \mathcal{D}_i}[\ell(h(f(\boldsymbol{x}_i; \boldsymbol{\theta}^f); \boldsymbol{\theta}^h), y_i)]$$

 $\overset{z_i}{\longmapsto} \text{Classifier}$

Feature

Extractor

 $\mathcal{X} \rightarrow$

- PRBM stores personalized (*biased*) representation information (\bar{z}_i^p) for each client, and
- make the remaining information (z_i^g) to be global.
- Formally,

Local loss (original):

 $\mathcal{L}_{\mathcal{D}_{i}}(\boldsymbol{\theta}) := \mathbb{E}_{(\boldsymbol{x}_{i}, y_{i}) \sim \mathcal{D}_{i}} [\ell(h(f(\boldsymbol{x}_{i}; \boldsymbol{\theta}^{f}); \boldsymbol{\theta}^{h}), y_{i})]$ $\mathcal{L}_{\mathcal{D}_{i}}(\boldsymbol{\theta}_{i}) := \mathbb{E}_{(\boldsymbol{x}_{i}, y_{i}) \sim \mathcal{D}_{i}} [\ell(h(f(\boldsymbol{x}_{i}; \boldsymbol{\theta}^{f}) + \bar{\boldsymbol{z}}_{i}^{p}; \boldsymbol{\theta}^{h}), y_{i})]$

Local loss (with **PRBM**):

- PRBM stores personalized (*biased*) representation information (\bar{z}_i^p) for each client, and
- make the remaining information (z_i^g) to be global.
- Formally,

$$\mathcal{X} \xrightarrow{\mathsf{Feature}} z_i^{\overline{z}_i^p} \xrightarrow{\overline{z}_i^p} \mathsf{Classifier} \xrightarrow{\mathcal{Y}} \Delta^{\mathcal{Y}}$$

Local loss (original):
$$\mathcal{L}_{\mathcal{D}_i}(\boldsymbol{\theta}) := \mathbb{E}_{(\boldsymbol{x}_i, y_i) \sim \mathcal{D}_i}[\ell(h(f(\boldsymbol{x}_i; \boldsymbol{\theta}^f); \boldsymbol{\theta}^h), y_i)]$$

Local loss (with PRBM):

$$\mathcal{L}_{\mathcal{D}_i}(\boldsymbol{\theta}_i) := \mathbb{E}_{(\boldsymbol{x}_i, y_i) \sim \mathcal{D}_i}[\ell(h(f(\boldsymbol{x}_i; \boldsymbol{\theta}^f) + \bar{\boldsymbol{z}}_i^p; \boldsymbol{\theta}^h), y_i)]$$

View the PRBM as a personalized translation transformation PRBM : $\mathcal{Z} \mapsto \mathcal{Z}$:

- PRBM stores personalized (*biased*) representation information (\bar{z}_i^p) for each client, and
- make the remaining information (z_i^g) to be global.
- Formally,

$$\mathcal{X} \xrightarrow{\mathsf{Feature}}_{\mathsf{Extractor}} z_i^p \xrightarrow{\overline{z}_i^p} \mathsf{Classifier} \xrightarrow{\mathcal{Y}} \Delta \mathcal{Y}$$

Local loss (original): $\mathcal{L}_{\mathcal{D}_i}(\boldsymbol{\theta}) := \mathbb{E}_{(\boldsymbol{x}_i, y_i) \sim \mathcal{D}_i}[\ell(h(f(\boldsymbol{x}_i; \boldsymbol{\theta}^f); \boldsymbol{\theta}^h), y_i)]$

Local loss (with PRBM):

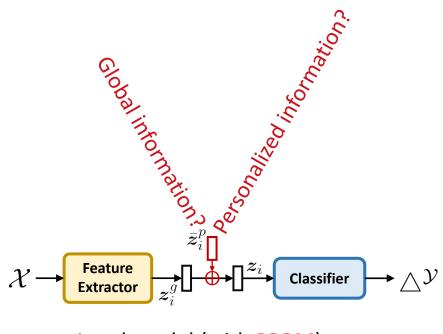
$$\mathcal{L}_{\mathcal{D}_i}(\boldsymbol{\theta}_i) := \mathbb{E}_{(\boldsymbol{x}_i, y_i) \sim \mathcal{D}_i}[\ell(h(f(\boldsymbol{x}_i; \boldsymbol{\theta}^f) + \bar{\boldsymbol{z}}_i^p; \boldsymbol{\theta}^h), y_i)]$$

View the PRBM as a personalized translation transformation PRBM : $\mathcal{Z} \mapsto \mathcal{Z}$:

$$\mathcal{L}_{\mathcal{D}_i}(\boldsymbol{\theta}_i) := \mathbb{E}_{(\boldsymbol{x}_i, y_i) \sim \mathcal{D}_i}[\ell(h(\mathsf{PRBM}(f(\boldsymbol{x}_i; \boldsymbol{\theta}^f); \bar{\boldsymbol{z}}_i^p); \boldsymbol{\theta}^h), y_i)]$$

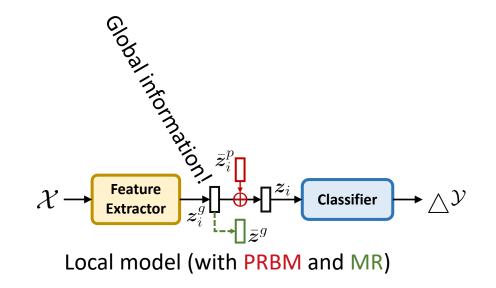
• We make **PRBM** to be trainable to learn personalized representation information

- We make **PRBM** to be trainable to learn personalized representation information
- However, trainable PRBM requires guidance to recognize the global and personalized information



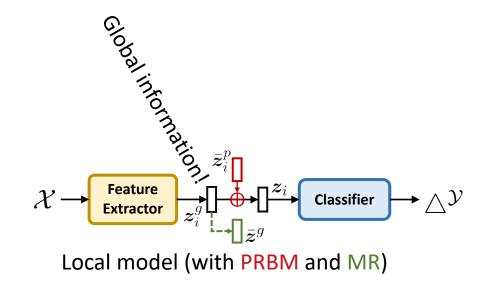
Local model (with **PRBM**)

- MR explicitly guides the local feature extractor to generate z_i^g with global information, by
- further regularize z_i^g to a globally shared *client-invariant mean* \bar{z}^g

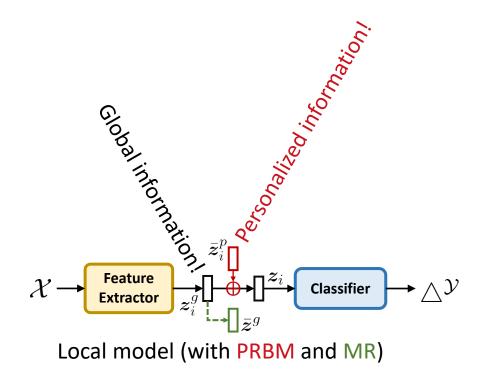


- MR explicitly guides the local feature extractor to generate z_i^g with global information, by
- further regularize z_i^g to a globally shared *client-invariant mean* \bar{z}^g

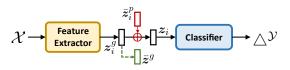
A consensus obtained during the initialization period before FL



- MR explicitly guides the local feature extractor to generate z_i^g with global information, by
- further regularize z_i^g to a globally shared *client-invariant mean* \bar{z}^g



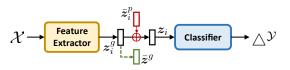
- MR explicitly guides the local feature extractor to generate z_i^g with global information, by
- further regularize z_i^g to a globally shared *client-invariant mean* \bar{z}^g
- Formally,



Local loss (with **PRBM**):

$$\mathcal{L}_{\mathcal{D}_i}(\boldsymbol{\theta}_i) := \mathbb{E}_{(\boldsymbol{x}_i, y_i) \sim \mathcal{D}_i}[\ell(h(\mathtt{PRBM}(f(\boldsymbol{x}_i; \boldsymbol{\theta}^f); \bar{\boldsymbol{z}}_i^p); \boldsymbol{\theta}^h), y_i)]$$

- MR explicitly guides the local feature extractor to generate z_i^g with global information, by
- further regularize z_i^g to a globally shared *client-invariant mean* \bar{z}^g
- Formally,



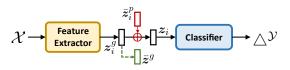
Local loss (with **PRBM**):

$$\mathcal{L}_{\mathcal{D}_i}(\boldsymbol{\theta}_i) := \mathbb{E}_{(\boldsymbol{x}_i, y_i) \sim \mathcal{D}_i}[\ell(h(\mathsf{PRBM}(f(\boldsymbol{x}_i; \boldsymbol{\theta}^f); \bar{\boldsymbol{z}}_i^p); \boldsymbol{\theta}^h), y_i)]$$

Local loss (with **PRBM** and MR):

$$\mathcal{L}_{\mathcal{D}_i}(\boldsymbol{\theta}_i) := \mathbb{E}_{(\boldsymbol{x}_i, y_i) \sim \mathcal{D}_i}[\ell(h(\mathsf{PRBM}(f(\boldsymbol{x}_i; \boldsymbol{\theta}^f); \bar{\boldsymbol{z}}_i^p); \boldsymbol{\theta}^h), y_i)] + \kappa \cdot \mathsf{MR}(\bar{\boldsymbol{z}}_i^g, \bar{\boldsymbol{z}}^g)$$

- MR explicitly guides the local feature extractor to generate z_i^g with global information, by
- further regularize z_i^g to a globally shared *client-invariant mean*
- Formally,



Local loss (with **PRBM**):

$$\mathcal{L}_{\mathcal{D}_i}(\boldsymbol{\theta}_i) := \mathbb{E}_{(\boldsymbol{x}_i, y_i) \sim \mathcal{D}_i}[\ell(h(\mathsf{PRBM}(f(\boldsymbol{x}_i; \boldsymbol{\theta}^f); \bar{\boldsymbol{z}}_i^p); \boldsymbol{\theta}^h), y_i)]$$

Local loss (with **PRBM** and MR):

$$\mathcal{L}_{\mathcal{D}_{i}}(\boldsymbol{\theta}_{i}) := \mathbb{E}_{(\boldsymbol{x}_{i}, y_{i}) \sim \mathcal{D}_{i}}[\ell(h(\mathsf{PRBM}(f(\boldsymbol{x}_{i}; \boldsymbol{\theta}^{f}); \bar{\boldsymbol{z}}_{i}^{p}); \boldsymbol{\theta}^{h}), y_{i})] + \kappa \cdot \mathsf{MR}(\bar{\boldsymbol{z}}_{i}^{g}, \bar{\boldsymbol{z}}^{g})$$
Final loss for client *i*

Improved Bi-directional Knowledge Transfer

- DBE can promote *bi-directional knowledge transfer* between server and client with
- Theoretical guarantee

Improved Bi-directional Knowledge Transfer

• Local-to-global knowledge transfer

Corollary 1. Consider a local data domain \mathcal{D}_i and a virtual global data domain \mathcal{D} for client *i* and the server, respectively. Let $\mathcal{D}_i = \langle \mathcal{U}_i, c^* \rangle$ and $\mathcal{D} = \langle \mathcal{U}, c^* \rangle$, where $c^* : \mathcal{X} \mapsto \mathcal{Y}$ is a ground-truth labeling function. Let \mathcal{H} be a hypothesis space of VC dimension *d* and $h : \mathcal{Z} \mapsto \mathcal{Y}, \forall h \in \mathcal{H}$. When using DBE, given a feature extraction function $\mathcal{F}^g : \mathcal{X} \mapsto \mathcal{Z}$ that shared between \mathcal{D}_i and \mathcal{D} , a random labeled sample of size *m* generated by applying \mathcal{F}^g to a random sample from \mathcal{U}_i labeled according to c^* , then for every $h^g \in \mathcal{H}$, with probability at least $1 - \delta$:

$$\mathcal{L}_{\mathcal{D}}(h^g) \le \mathcal{L}_{\hat{\mathcal{D}}_i}(h^g) + \sqrt{\frac{4}{m}(d\log\frac{2em}{d} + \log\frac{4}{\delta})} + \frac{d_{\mathcal{H}}(\tilde{\mathcal{U}}_i^g, \tilde{\mathcal{U}}^g)}{d} + \lambda_i,$$

where $\mathcal{L}_{\hat{D}_i}$ is the empirical loss on \mathcal{D}_i , e is the base of the natural logarithm, and $d_{\mathcal{H}}(\cdot, \cdot)$ is the \mathcal{H} -divergence between two distributions. $\lambda_i := \min_{h^g} \mathcal{L}_{\mathcal{D}}(h^g) + \mathcal{L}_{\mathcal{D}_i}(h^g)$, $\tilde{\mathcal{U}}_i^g \subseteq \mathcal{Z}$, $\tilde{\mathcal{U}}^g \subseteq \mathcal{Z}$, and $d_{\mathcal{H}}(\tilde{\mathcal{U}}_i^g, \tilde{\mathcal{U}}^g) \leq d_{\mathcal{H}}(\tilde{\mathcal{U}}_i, \tilde{\mathcal{U}})$. $\tilde{\mathcal{U}}_i^g$ and $\tilde{\mathcal{U}}^g$ are the induced distributions of \mathcal{U}_i and \mathcal{U} under \mathcal{F}^g , respectively. $\tilde{\mathcal{U}}_i$ and $\tilde{\mathcal{U}}$ are the induced distributions of \mathcal{U}_i and \mathcal{U} under \mathcal{F} is the feature extraction function in the original FedAvg without DBE.

Improved Bi-directional Knowledge Transfer

• Global-to-local knowledge transfer

Corollary 2. Let \mathcal{D}_i , \mathcal{D} , \mathcal{F}^g , and λ_i defined as in Corollary [] Given a translation transformation function PRBM : $\mathcal{Z} \mapsto \mathcal{Z}$ that shared between \mathcal{D}_i and virtual \mathcal{D} , a random labeled sample of size mgenerated by applying \mathcal{F}' to a random sample from \mathcal{U}_i labeled according to c^* , $\mathcal{F}' = PRBM \circ \mathcal{F}^g$: $\mathcal{X} \mapsto \mathcal{Z}$, then for every $h' \in \mathcal{H}$, with probability at least $1 - \delta$:

$$\mathcal{L}_{\mathcal{D}_i}(h') \le \mathcal{L}_{\hat{\mathcal{D}}}(h') + \sqrt{\frac{4}{m}(d\log\frac{2em}{d} + \log\frac{4}{\delta})} + d_{\mathcal{H}}(\tilde{\mathcal{U}}', \tilde{\mathcal{U}}'_i) + \lambda_i,$$

where $d_{\mathcal{H}}(\tilde{\mathcal{U}}',\tilde{\mathcal{U}}'_i) = d_{\mathcal{H}}(\tilde{\mathcal{U}}^g,\tilde{\mathcal{U}}^g_i) \leq d_{\mathcal{H}}(\tilde{\mathcal{U}},\tilde{\mathcal{U}}_i) = d_{\mathcal{H}}(\tilde{\mathcal{U}}_i,\tilde{\mathcal{U}})$. $\tilde{\mathcal{U}}'$ and $\tilde{\mathcal{U}}'_i$ are the induced distributions of \mathcal{U} and \mathcal{U}_i under \mathcal{F}' , respectively.

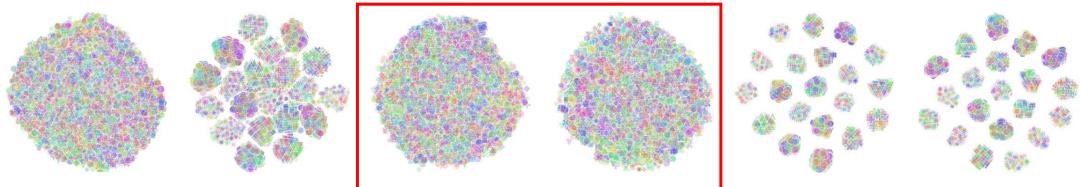
Please refer to our paper for proofs.

• How to Split the Model?

Table 1: The MDL (bits, \downarrow) of layer-wise representations, test accuracy (%, \uparrow), and the number of trainable parameters (\downarrow) in PRBM when adding DBE to FedAvg on Tiny-ImageNet using 4-layer CNN in the practical setting. We also show corresponding results for the close pFL methods. For FedBABU, "[36.82]" indicates the test accuracy after post-FL fine-tuning for 10 local epochs.

Metrics		Accuracy	Param.				
	CONV1→CONV2	$CONV1 \rightarrow CONV2 CONV2 \rightarrow FC1 FC1 \rightarrow FC2 \qquad Logits$		Logits			
FedPer [3]	5143	4574	3885	4169	33.84		
FedRep [20]	5102	4237	3922	4244	37.27		
FedRoD [14]	5063	4264	3783	3820	36.43		
FedBABU [61]	5083	4181	3948	3849	16.86 [36.82]	_	
Original (FedAvg)	5081	4151	3844	3895	19.46	0	
$CONV1 \rightarrow DBE \rightarrow CONV2$	<u>4650</u> (-8.48%)	4105 (-1.11%)	3679 (-4.29%)	3756 (-3.57%)	21.81 (+2.35)	28800	
$\text{CONV2} \rightarrow \text{DBE} \rightarrow \text{FC1}$	4348 (-14.43%)	<u>3716</u> (-10.48%)	3463 (-9.91%)	3602 (-7.52%)	47.03 (+27.57)	10816	
$FC1 \rightarrow DBE \rightarrow FC2$	4608 (-9.31%)	3689 (-11.13%)	<u>3625</u> (-5.70%)	3688 (-5.31%)	43.32 (+23.86)	512	

• Eliminate Representation Bias for the First Level of Representation after local training



(a) FedAvg (B). (b) FedAvg (A). (c) +DBE (\boldsymbol{z}_i^g, B) . (d) +DBE (\boldsymbol{z}_i^g, A) . (e) +DBE (\boldsymbol{z}_i, B) . (f) +DBE (\boldsymbol{z}_i, A) .

Figure 3: t-SNE visualization for representations on Tiny-ImageNet (200 labels). "B" and "A" denote "before local training" and "after local training", respectively. We use *color* and *shape* to distinguish *labels* and *clients*, respectively. *Best viewed in color and zoom-in*.

• **DBE** can greatly improve existing FL methods in both **generalization** and **personalization** abilities

- **DBE** promotes traditional FL methods in both MDL and accuracy by at most
 - -22.35% in MDL (bits) and
 - +32.30 in accuracy (%)

Table 4: The MDL (bits, \downarrow) and test accuracy (%, \uparrow) before and after adding DBE to traditional FL methods on Cifar100, Tiny-ImageNet, and AG News in the practical setting. TINY and TINY* represent using 4-layer CNN and ResNet-18 on Tiny-ImageNet, respectively.

Metrics	MDL				Accuracy			
Datasets	Cifar100	TINY	TINY*	AG News	Cifar100	TINY	TINY*	AG News
SCAFFOLD [38]	1499	3661	3394	1931	33.08	23.26	24.90	88.13
FedProx [46]	1523	3701	3570	2092	31.99	19.37	19.27	87.21
MOON [45]	1516	3696	3536	1836	32.37	19.68	19.02	84.14
FedGen [96]	1506	3675	3551	1414	30.96	19.39	18.53	89.86
SCAFFOLD+DBE	1434	3549	3370	1743	63.61	45.55	45.09	96.73
FedProx+DBE	1439	3587	3490	1689	63.22	42.28	41.45	96.62
MOON+DBE	1432	3580	3461	1683	63.26	43.43	41.10	96.68
FedGen+DBE	1426	3563	3488	1098	63.26	42.54	41.87	97.16

- **DBE** greatly improves FedAvg at most +47.40 on Cifar100 in the pathological setting and
- outperforms the SOTA pFL methods by up to +11.36 on Cifar100⁺

Table 5: The test accuracy (%, \uparrow) of pFL methods in two statistically heterogeneous settings. Cifar100[†] represents the experiment with 100 clients and joining ratio $\rho = 0.5$ on Cifar100.

Settings	Pathological setting			Practical setting					
	FMNIST	Cifar100	TINY	FMNIST	Cifar100	Cifar100 [†]	TINY	TINY*	AG News
Per-FedAvg [22]	99.18	56.80	28.06	95.10	44.28	38.28	25.07	21.81	87.08
pFedMe [67]	99.35	58.20	27.71	97.25	47.34	31.13	26.93	33.44	87.08
Ditto [47]	99.44	67.23	39.90	97.47	52.87	39.01	32.15	35.92	91.89
FedPer [3]	99.47	63.53	39.80	97.44	49.63	41.21	33.84	38.45	91.85
FedRep [20]	99.56	67.56	40.85	97.56	52.39	41.51	37.27	39.95	92.25
FedRoD [14]	99.52	62.30	37.95	97.52	50.94	48.56	36.43	37.99	92.16
FedBABU [61]	99.41	66.85	40.72	97.46	55.02	52.07	36.82	34.50	95.86
APFL [21]	99.41	64.26	36.47	97.25	46.74	39.47	34.86	35.81	89.37
FedFomo [89]	99.46	62.49	36.55	97.21	45.39	37.59	26.33	26.84	91.20
APPLE [52]	99.30	65.80	36.22	97.06	53.22		35.04	39.93	84.10
FedAvg	80.41	25.98	14.20	85.85	31.89	28.81	19.46	19.45	87.12
FedAvg+DBE	99.74	73.38	42.89	97.69	64.39	63.43	43.32	42.98	96.87

• Other experiments also show the *effectiveness* and *efficiency* of our DBE.

Items	ns Heterogeneity				F L +MR	Overhead		
			•					
	$\beta = 0.01$	$\beta = 0.5$	$\beta = 5$	Accuracy	Improvement	Total time	Time/iteration	
Per-FedAvg [22]	39.39	21.14	12.08			121 min	3.56 min	
pFedMe [67]	41.45	17.48	4.03			1157 min	10.24 min	
Ditto [47]	50.62	18.98	21.79	42.82	10.67	318 min	11.78 min	
FedPer [3]	51.83	17.31	9.61	41.78	7.94	83 min	1.92 min	
FedRep [20]	55.43	16.74	8.04	41.28	4.01	471 min	4.09 min	
FedRoD [14]	49.17	23.23	16.71	42.74	6.31	87 min	1.74 min	
FedBABU [61]	53.97	23.08	15.42	38.17	1.35	811 min	1.58 min	
APFL [21]	49.96	23.31	16.12	39.22	4.36	156 min	2.74 min	
FedFomo [89]	46.36	11.59	14.86	29.51	3.18	193 min	2.72 min	
APPLE [52]	47.89	24.24	17.79		—	132 min	2.93 min	
FedAvg	15.70	21.14	21.71			365 min	1.59 min	
FedAvg+DBE	57.52	32.61	25.55			171 min	1.60 min	

Table 6: The test accuracy (%, \uparrow) and computation overhead (\downarrow) of pFL methods.

Eliminating Domain Bias for Federated Learning in Representation Space

Paper with code: https://github.com/TsingZ0/DBE

E-mail: tsingz@sjtu.edu.cn

Paper with code

Thanks!