
1

Energy and Spectrum Efficient Federated Learning
via High-Precision Over-the-Air Computation

Liang Li, Member, IEEE, Chenpei Huang, Student Member, IEEE, Dian Shi, Member, IEEE, Hao Wang,
Member, IEEE, Xiangwei Zhou, Senior Member, IEEE, Minglei Shu, Member, IEEE, and Miao Pan, Senior

Member, IEEE

Abstract—Federated learning (FL) enables mobile devices to
collaboratively learn a shared prediction model while keeping
data locally. However, there are two major research challenges
to practically deploy FL over mobile devices: (i) frequent wireless
updates of huge size gradients v.s. limited spectrum resources,
and (ii) energy-hungry FL communication and local comput-
ing during training v.s. battery-constrained mobile devices. To
address those challenges, in this paper, we propose a novel
multi-bit over-the-air computation (M-AirComp) approach for
spectrum-efficient aggregation of local model updates in FL
and further present an energy-efficient FL design for mobile
devices. Specifically, a high-precision digital modulation scheme
is designed and incorporated in the M-AirComp, allowing mobile
devices to upload model updates at the selected positions simul-
taneously in the multi-access channel. Moreover, we theoretically
analyze the convergence property of our FL algorithm. Guided
by FL convergence analysis, we formulate a joint transmission
probability and local computing control optimization, aiming
to minimize the overall energy consumption (i.e., iterative local
computing + multi-round communications) of mobile devices in
FL. Extensive simulation results show that our proposed scheme
outperforms existing ones in terms of spectrum utilization, energy
efficiency, and learning accuracy.

Index Terms—Federated learning, over-the-air computation,
gradient quantization, energy efficiency.

I. INTRODUCTION

With the development of mobile communications and
Internet-of-Things (IoT) technologies, mobile devices with
built-in sensors and Internet connectivity have proliferated
huge volumes of data at the network edge. These data can
be collected and analyzed to build increasingly complex ma-
chine learning models. To avoid raw-data sharing among the
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untrustworthy parties and leverage the ever-increasing com-
putation capability of mobile devices, the emerging federated
learning (FL) framework allows participating mobile devices
to collaboratively train a machine learning model under the
orchestration of a centralized server by just exchanging the
local model updates with others via wireless communications.
With such desirable properties, FL over mobile devices has
inspired a wide utilization in a large variety of intelligent ser-
vices, such as the keyword prediction [1], voice classifier [2],
and e-health [3], etc.

Although only model updates instead of raw data are
transferred between mobile devices and the FL server, such
updates could contain hundreds of millions of parameters with
complex neural networks. That makes the uplink transmissions
from mobile devices to the FL server for model aggregation
particularly challenging, resulting in a huge burden on both
wireless networks and mobile devices. On the one hand,
the spectrum resource that can be allocated to each device
decreases proportionally as the number of devices increases,
which hampers the scalability of FL to accommodate a large
number of mobile devices with limited spectrum resources. On
the other hand, transmitting a large volume of model updates
periodically and executing heavy local on-device computations
can quickly drain out the energy of battery-powered mobile
devices. Such a mismatch restricts mobile devices or makes
them reluctant to participate in FL.

Over-the-air computation (AirComp) provides a promising
solution to address the aforementioned spectrum challenge
by achieving scalable and efficient model update aggregation
in FL. Unlike the conventional orthogonal multiple access
techniques, where each user is restricted to its allocated
spectrum band [4], AirComp allows all the users to utilize the
whole spectrum for simultaneous transmission. By applying
AirComp to FL, all the participating devices can transmit
their model updates on the same channel. Due to the fact
that multi-access channel (MAC) inherently yields an additive
superposed signal, the signals of all the participating devices
are aligned to obtain desired arithmetic computation results
directly over the air, thus significantly improving the spectrum
efficiency. However, most existing works employ the analogy
modulation to design their over-the-air FL schemes, which is
not compatible with commercial off-the-shelf digital mobile
devices and thus hinders their deployment in current/future
communication systems, such as LTE, 5G, Wi-Fi 6, and 6G,
etc. Besides, most existing efforts focus on single-iteration
transmission design for AirComp-based FL [5], [6], and the
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impacts of AirComp on the long-term federated training
performance, especially the convergence rate, are widely over-
looked.

In this work, we design a multi-bit Aircomp (M-AirComp)
FL scheme, named ESOAFL, whose merits are two-fold: i) It
is compatible with the most common Quadrature Amplitude
Modulation (QAM) transmitter where gradient quantization is
incorporated to facilitate the digital modulation, so that one
do not need to modify the modulation protocols manufactured
within commercial off-the-shelf mobile devices for the peri-
odical gradient transmission. ii) It filters the FL participants
with good channel conditions based on a well-controlled
transmission probability to transmit the updated gradients,
which helps save the transmission energy compared with other
AirComp-based FL schemes. We analyze the convergence
property of our ESOAFL algorithm and derive the number of
communication rounds needed for achieving the convergence.
Guided by the theoretical results, we model the energy con-
sumption of all the FL devices from the long-term learning
perspective, where wireless communication (i.e., “talking”)
and local computing (i.e., “working”) are two main focuses.
To make the ESOAFL battery-friendly to the participating
mobile devices, a joint transmission probability and local
computing control scheme is developed to balance “talking”
and “working” during performing the ESOAFL, with the goal
of energy consumption minimization. Our salient contributions
are summarized as follows.

• We propose an energy and spectrum efficient M-AirComp
FL (ESOAFL) scheme where the updated gradients of
every FL participant are quantized into high-precision
bitstreams, adapting to the digital modulation settings. To
facilitate the M-AirComp, a transmission control policy is
integrated in ESOAFL to only allow the FL participants
with good channel conditions for FL model aggregation
by introducing a tunable parameter, i.e., transmission
probability.

• We theoretically analyze the convergence property of our
ESOAFL to characterize the impacts of the M-AirComp
on FL. Guided by it, the transmission probability and
local computing iterations are jointly optimized from
the long-term learning perspective, aiming to achieve
energy-efficient federated training on mobile devices over
spectrum-constrained wireless networks.

• We conduct extensive simulations to verify the superiority
of the ESOAFL compared to several baselines, under
varying learning models, training datasets, and network
settings. It shows that our ESOAFL scheme can improve
spectral efficiency dozens of times and save at least half
of the energy consumption.

The remainder of the paper is organized as follows. Section
II provides some preliminaries of AirComp and FL. Section
III presents our M-AirComp design and the ESOAFL scheme.
Section IV gives the theoretical analysis of ESOAFL and
elaborates on the joint transmission probability and local com-
puting control approach. Numerical simulations are provided
in Section V, and VI reviews related works. Section VII finally
concludes the paper and provides future work.

II. PRELIMINARIES OF FL AND AIRCOMP FL
A. Preliminaries of FL

We consider a federated learning system consisting of K
participating users carrying mobile devices, where each user
k ∈ {1, 2, . . . ,K} has its own dataset, denoted by Dk. The
goal of FL is to collaborate the users to perform a unified
optimization task, formally written as:

min
w∈Rd

f(w) ≜
1

K

K∑
k=1

fk(w), (1)

where fk is the local loss function corresponding to user k,
and d is the dimension of the model parameters.

Let r ∈ {1, 2, . . . , R} be the index of FL global com-
munication round, and H be the number of local training
iterations executed between every two consecutive global
communication rounds. Moreover, we define wr as the global
model at the r-th communication round and define wr,h

k as
the local model of user k at the h-th local iteration in the r-th
communication round. Then the local training process of user
k in the r-th communication round is given by:

wr,h+1
k = wr,h

k − η∇Fk(w
r,h
k ) for h = 0, 1, ...,H − 1, (2)

where ∇Fk(w
r,h
k ) is a stochastic gradient of function f(·)

with a random batch-size data, and η is the local learn-
ing rate. Here, ∇Fk(w

r,h
k ) is an unbiased estimation of

∇fk(wr,h
k ), i.e., Eξ∼Dk

[∇Fk(w) | ξ] = ∇fk(w), where ξ
represents the randomness like the batch-size index. After
finishing the local training, every participating user uploads
its local model updates to the server for global aggregation,
i.e., η

∑H−1
h=0 ∇Fk(w

r,h
k ), and the server then broadcasts the

most recent global model to initiate a new round of local
training. The above process is repeated until the global model
converges.

B. Preliminaries of AirComp FL
During the FL process, all the users have to transmit their

local updates to the server for global aggregation, which
may result in severe transmission congestion and consume
significant communication resources, especially in cases with
massive participating users. As one of the advanced wireless
techniques, over-the-air computation (AirComp) enables all
the users to simultaneously transmit the local gradients over
the same wireless medium without spectrum allocation and
naturally aggregates the local updates during the signal propa-
gation, which exhibits great potentials to improve the spectrum
utilization.

Let X := {x1, x2, ..., xK} and ỹ denote the input set and the
output objective of the AirComp operation, respectively. Here,
xk is the gradients to be transmitted by user k, and ỹ is the
global aggregation result received at the server with AirComp.
Generally, an AirComp-based wireless communication system
adopts precoding and amplification at transmitters, while re-
ceivers often have equalization blocks for signal detection.
Therefore, AirComp computes the aggregated objective as

ỹ := Air (X ) = a

K

[
K∑

k=0

hkpkxk + n

]
, (3)
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Fig. 1. Over-the-Air federated learning (AirComp FL).

where hk ∈ C is the channel coefficient between user k and the
server, and n ∼ N(0, σ2

z) is the additive white Gaussian noise
(AWGN) at the receiver. The Tx-scaling factor pk ∈ C, a.k.a.
power control policy, compensates the phase shift posed by
the channel and amplifies the transmit signal. The goal of the
Tx-scaling is to ensure that each participating user contributes
equally at the receiving antenna and the superposed signal is
proportional to the ideal summation, which is defined as the
average operation over the input set without AirComp, i.e.,
y := 1

K

∑K
k=1 xk. Accordingly, the Rx-scaling factor a ∈ R

acts as an equalizer and recovers the sampled analog result to
its expected value.

C. Preliminary Experiments on AirComp FL

To demonstrate the spectrum-efficient benefit of AirComp
FL, we conduct the preliminary experiments on AirComp
FL and the classic FedAvg without AirComp, as shown in
Fig. 1. Here, 10 users are considered to participate in an
FL task and collaboratively train a ResNet-20 model on the
CIFAR-10 dataset. Both the communication bandwidth and
the number of training epochs are set to be the same for
these two schemes. Taking test accuracy as the measure,
Fig. 1(a) depicts the convergence performance of the training
process, while Fig. 1(b) displays the communication resource
consumption during the training. It shows that, compared
with FedAvg, AirComp FL only requires a little more or
even the same number of data epochs to achieve the target
accuracy. This impies that AirComp operation imposes neg-
ligible impacts on the convergence rate of FL. Meanwhile,

Fig. 2. The design of multi-bit Over-the-Air computation.

the communication resource consumption of the AirComp FL
is much less than that of FedAvg, since the latter forces the
users to use orthogonal channels for interference avoidance
instead of performing concurrent transmission over the same
spectrum like AirComp FL does. Note here that we use the
normalized communication resources for Fig. 1(b) illustration
and assume one unit communication resource is consumed in
each communication round in AirComp FL.

III. THE DESIGN OF M-AIRCOMP AND
M-AIRCOMP-BASED FL

A. M-AirComp Design

Different from the most existing AirComp methods with an
analogy modulation scheme, we establish a digital modulation
scheme for the AirComp to cater for the commercial trans-
mit devices and design a multi-bit over-the-Air computation
scheme (M-AirComp). To this end, the Rx-scaling factor
a performs as a digital domain equalizer, and the division
operation in Eq. (3) to calculate the arithmetic average is
also in the digital domain. In order to eliminate the burden
of redesigning the modulation scheme, we tend to integrate
the gradient quantization to the most common Quadrature
Amplitude Modulation (QAM) in LTE, 5G, and Wi-Fi 6
standard [7]. Instead of transmitting arbitrary values, gradients
to transmit are clipped and quantized as Multiple Amplitude
Shift Keying (MASK) symbols, so as to be compatible with
modern digital devices. Two MASK-modulated gradients can
be transmitted orthogonally using in-phase (I) and quadrature
(Q) channel simultaneously. We notice that it is equivalent
to mapping two separate gradients onto a symbol from the
square M2 QAM constellation. Here, we limit M between
2 to 2b. For example, when b is set as 3, the user will use
64QAM to transmit two gradients, as shown in Fig. 2. In this
way, altering the value M at the transmitter according to the
estimated channel gain allows full digital data transmission
while preserving b-bit resolution.

Assume that the server equips with a high-resolution analog-
to-digital converter (ADC) (e.g., 16-bit). While receiving, mul-
tiple QAM symbols superpose at the sampling instance, which
can be viewed from (a part of) a higher-order rectangular QAM
constellation diagram (when the number of mobile devices
is odd) or a zero-centered constellation diagram (when the
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number of users is even). Since the biggest possible value after
aggregation can be obtained from user feedback, we can utilize
this value as the ADC reference voltage. In order to alleviate
the detection complexity, we directly use the quantized sam-
ples followed by Rx-scaling defined in Eq. (3) in the digital
domain. In this way, the transmission module is implemented
in a digital manner, which enables the M-AirComp to have
better compatibility compared with traditional AirComp. The
process is also illustrated in Fig. 2. This result can be viewed
as the desired computational result added by quantization
error and channel noise, whose impacts on federated learning
performance are analyzed in the following section.

In the transmission process, every device is subject to an
average transmitting power budget, i.e., P 0. The transmission
power constraint is given by

E[|pk|2] ≤ P 0,∀k, (4)

where the expectation is taken over the distribution of random
channel coefficients. Recall that gradient parameters transmit-
ted by different devices are received with identical amplitudes
for implementing gradient aggregation via AirComp, which
can be achieved by inverting the channels via power control.
In practice, some devices facing severe signal fading may not
completely align their amplitude due to the power limit, i.e.,
the Tx-scaling factor pk ∈ C cannot be infinitely enlarged to
meet the amplitude alignment requirement. This work adopts
an energy efficient power control policy that performs channel-
inversion-based power control only for the users with desired
channel gain. The users with poor channel conditions are not
allowed to transmit, i.e. its transmit power is set to be zero. Let
gth be the channel gain threshold for possible transmission, and
the power control policy pk for any user k can be represented
as:

pk =

{ √
ϱh†

k

|hk|2
, |hk|2 ≥ gth

0, |hk|2 < gth .
(5)

Here, ϱ is a scaling factor to guarantee the desired SNR,
which determines the receiving power of the gradient update
from each user; hk represents the channel coefficient and its
conjugate is denoted by h†

k. Under the above power control
policy, only users facing channel gain larger than gth can
be allowed to transmit their updated gradients. Note that
the threshold gth can be adjusted to control the gradient
transmissions. With the power constraint in Eq. (4), we have
|hk|2 = ϱ/|pk|2 ≥ ϱ/P 0. It means that the threshold gth can be
set as an arbitrary value larger than the minimum value gmin

th :=
ϱ
P 0 . Specifically, in a certain communication environment, the
greater the threshold gth we set, the more the users are allowed
to upload their updated gradients. By varying the threshold gth,
our M-AirComp design has the potential to only involve the
users with good channel conditions, which allows to lower
the transmit power of the edge devices and thereby benefits
in energy-saving. We define ρ as the average transmission
probability that the users’ channel gain is above the power-
cutoff threshold gth, which reflects the participation degree of
the FL users. Note here that any threshold gth will correspond
to a transmission probability ρ. Assume that the channel

Algorithm 1 ESOAFL Algorithm

Initialization: Initialize the global model w0 and set w0,0
k =

w0,∀k ∈ K; Set the learning rate γ and η, local computing
iterations H , and the channel gain threshold gth

Initialize the communication index r = 0 and the local
computing iteration count h = 0

1: while r < R do
2: for h = 0, ...,H − 1 do
3: Each device k computes the unbiased stochastic

gradients ∇Fk(w
r,h
k ) of fk(w

r
k) with one batch size of

data from the dataset Dk

4: Each device k in parallel updates its local model:
wr,h+1

k = wr,h
k − η∇Fk(w

r,h
k ), ∀k

5: end for
6: Each device k calculates the accumulated gradients

with gradient quantization as Q
(
η
∑H−1

h=0 ∇Fk(w
r,h
k )
)

.
7: Each device k transmits the quantized accumulated

gradients if the observed channel gain larger than the pre-
selected threshold gth , i.e., |hk|2 ≥ gth ; otherwise, no
transmission.

8: All the local gradients are aggregated over the air to
update the global model via Eq. (7).

9: Update r ← r + 1.
10: Each device k updates its local model wr,0

k = wr.
11: end while

coefficient is Rayleigh distributed, i.e., hk ∼ CN(0,
√
λ)

and thus the channel gain gk = |hk|2 follows an exponential
distribution. The transmission probability ρ corresponding to
the threshold gth can be calculated as:

ρ = Pr(gk ≥ gth) =

∫ ∞

gth

λe−λxdx = e−λgth . (6)

With the transmission probability ρ, the Rx-scaling factor
a will be set as 1√

ϱρ to rescale the received signal. By
substituting gmin

th := ϱ
P 0 into Eq. (6), we have the highest

transmission probability ρmax as ρmax = e−λgmin
th = e−λ ϱ

P0 . It
implies that, due to the fading channel and the devices’ power
budget, the transmission probability is upper-bounded.

B. M-AirComp-based FL Design

Based on M-AirComp, this subsection presents an Energy
and Spectrum Efficient Over the Air Federated Learning
(ESOAFL) algorithm integrating gradient quantization, where
the overview is illustrated in Fig. 2. The pseudocode of our
ESOAFL is given in Alg. 1, and the details are described in
the following.

Following the ESOAFL, all the participating users start
the training procedure with the initialized model parameters.
Here, we assume a synchronized FL setting where every user
periodically performs the same number of local iterations, i.e.,
H , with mini-batch size data drawn from its own dataset for
model aggregation. After the local training, a uniform gradient
quantization operator Q(·) is utilized to quantize the updated
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TABLE I
SUMMARY OF NOTATIONS.

k(K) Index (number) of FL clients r(R) Index (number) of FL global round
wr,h

k Local model of client k wr Global model at the r-th round
pk Transmitting power of client k hk Channel coefficient of client k
xk Transmit signal of client k ŷ Global aggregation at the server with AirComp
H The number of local iterations gth Power-cutoff threshold for transmitting
ρ Transmission probability ϵ Target training accuracy

P comm Transmission power per global round T comm Transmission time per global round
P comp Transmission power per global round T comp Transmission time per global round

gradients into low bits, i.e., 4-bit or 8-bit. Taking b-bit quan-
tization for example, the local updates of all the participants
are quantized to 2b levels with a specific maximum/minimum
value, catering to the digital wireless transmission scheme.
Next, every 2 gradient element is modulated into one digital
symbol for transmission. We assume the symbol-level synchro-
nization among all the mobile devices that ensures coherent
and concurrent transmission. This assumption can be realized
by dedicating the bandwidth for mobile device synchroniza-
tion, e.g., 1.08 MHz primary synchronization channel (PSCH)
and secondary synchronization channel (SSCH) in LTE system
[8], or the AirShare [9] for distributed MIMO synchronization.
Then we employ the M-AirComp operator Air(·), along with
the proposed energy efficient power control policy. In specific,
the threshold gth is determined firstly, which is one-to-one
mapped with transmission probability ρ by ρ = e−λgth , and
then the FL user whose channel gain larger than gth can be
allowed to transmit its gradient updates. Because M-AirComp
integrates wireless transmission and model aggregation over
the air, the server receives only the aggregated gradients, based
on which the global model is updated by:

wr+1 = wr − Air

({
Q

(
η

H−1∑
h=0

∇Fk(w
r,h
k )

)}
K

)
. (7)

After that, the server will broadcast the global model to all
devices for the next-round federated training. We repeat the
above procedure for R rounds until the model converges to a
stationary point. Particularly, the convergence requirement can
be represented as 1

R

∑R−1
r=0 ∥∇fr∥22 ≤ ϵ, where ϵ denotes the

target training loss and ∇fr is the global function gradient at
the r-th communication round.

IV. SPECTRUM AND ENERGY EFFICIENT FL:
FORMULATION AND SOLUTION

In this section, we formulate an overall energy minimization
problem and establish the communication and computation
energy models of the proposed ESOAFL algorithm. Based
on the derived convergence analysis, we then optimize the
control policy in terms of the transmission probability ρ
and local computing iterations H to minimize the overall
energy consumption. In Table I, we summarize the important
notations we use throughout the paper.

A. Energy Minimization Problem Formulation

It is challenging to deploy energy-hungry FL tasks on
mobile devices due to their limited battery capacity. Hence, in

this work, we aim to minimize the total energy consumption
of FL training via joint control of local computing itera-
tions H and transmission probability ρ. The average energy
consumption per communication round of mobile device is
cast as E = Ecomm(ρ) + EcompH . Here, Ecomm(ρ) is
the communication energy consumed to transmit the updated
gradients, which is related to the transmission probability
ρ, and Ecomp is the computing energy of performing one
local iteration. Our goal is to minimize the overall energy
consumption during the federated training while guaranteeing
the model convergence, which is formulated as:

min E [Etot] ≜ E [REcomm(ρ)] + E [REcompH]

s.t.,
1

R

R−1∑
r=0

E
[
∥∇fr∥22

]
≤ ϵ.

(8)

Here, ϵ is the target FL accuracy, and R indicates the
number of global communication rounds required for conver-
gence. Note that the value of R is related to the model update
behaviors and the target training accuracy, which is difficult to
determine before completing the training. Thus, in the follow-
ing, we first give the energy models for edge devices, and then
quantify the number of global communication rounds required
for achieving a ϵ-global model convergence, i.e., satisfying
1
R

∑R−1
r=0 E

[
∥∇fr∥22

]
≤ ϵ, via rigorous convergence analysis.

B. Energy Model

1) Communication energy model: If we consider the M-
AirComp power control policy with transmission probability
ρ whose value is smaller than pmax

b , the threshold channel gain
is mapped as gth := − 1

λ ln ρ. In this way, the average power
consumption among all the users and time slots will be:

P comm =ρϱ

∫ ∞

gth

λ
1

x
e−λxdx

=− ρϱλEi (−λgth) = −ρϱλEi (ln ρ) ,
(9)

where Ei(x) is the exponential integral function denoted as
Ei(x) =

∫ x

−∞
et

t dx. Due to the fact that − ln ρ is positive,
we have Ei (ln ρ) = −E1 (− ln ρ) where E1(x) =

∫∞
x

e−t

t dx.
Then we have P comm = −ρϱλEi (ln ρ) = ρϱλE1 (− ln ρ).
For any x with positive real value, E1(x) can be tightly upper
bounded by an elementary function as follows:

E1(x) < e−x ln

(
1 +

1

x

)
. (10)
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We note that the gap between the original E1(x) function
and its bound is negligible, but the calculation of the func-
tion E1(x) is much more complex than that of its bound
due to the integral operator. Recall that we wish to reduce
the transmission energy consumption that is proportional to
the value of E1(− ln pb). For ease of solution, we replace
E1(− ln pb) (− ln ρ ≥ 0 always holds) with its upper bound
eln pb ln

(
1 + 1

− ln pb

)
, implying that we minimize the trans-

mission energy consumption for the worst case. Then we have

P comm ≈ ρϱλeln ρ ln

(
1 +

1

− ln ρ

)
= ϱλρ2 ln(1− 1

ln ρ
).

(11)

After executing a fixed number of local iterations, each
device is required to quantize the updated gradients into low-
bit precision for digital transmission. Here, we adapt MASK
to modulate the gradients, which means the magnitude of each
symbol is sufficient to decode the transmission gradient. Let
Ts denote the symbol duration that is in inverse proportion
to channel bandwidth. To transmit the gradients with the size
of d, d/2 symbol is required according to the M-AirComp
design. Thus, the transmission time can be represented as
T comm = d

2Ms
Ts, where Ms symbols are transmitted in

parallel. Accordingly, the communication energy consumption
for each device in each communication round is computed as

Ecomm = P comm × T comm. (12)

2) Computational energy model: With massive data stored
and processed by edge devices, on-device training can natu-
rally be treated as computation-hungry tasks. Luckily, most
modern smart devices are equipped with high-performance
GPUs and can handle such heavy training tasks. This work
considers the GPU computational energy model. We model
the energy consumed to process a mini-batch of data in one
iteration as

Ecomp = P comp × T comp, (13)

where P comp and T comp are runtime power and execution
time of the edge device, respectively. Both of them are related
to the GPU core frequency/voltage and the memory frequency
in the forms of [10]

P comp = P 0 + afmem + b(vcore)2f core, (14)

T comp = T 0 +
u

fmem
+

v

f core
. (15)

Here, P0 and T0 are the static power and static time
consumption. f core/vcore and fmem represent the core fre-
quency/voltage and memory frequency, respectively. a, b, u,
and v are constants reflecting the sensitivity of the task execu-
tion to GPU memory and core frequency/voltage scaling [10],
[11]. Given a specific FL task, i.e., a neural network model
with a dataset, these constants can be well estimated based
on experiments by measuring the average runtime energy
consumption. Since every user performs H local iterations
between two consecutive communication rounds, the energy
consumption of local computing in one communication round
can be calculated as the product of the energy consumption of
one iteration and the number of local iterations, i.e., Ecomp ·H .

C. Impacts of Control Variables on ESOAFL Convergence

In this subsection, we theoretically analyze the impacts of
control variables ρ and H on the convergence rate of ESOAFL.
We consider the following three standard assumptions.

Assumption 1 (Smoothness). The objective function fk is
differentiable and L-smooth :

∥∇fk(x)−∇fk(y)∥ ≤ L∥x− y∥,∀k. (16)

Assumption 2 (Bounded variances and second moments).
The variance and the second moments of stochastic gradients
evaluated with a mini-batch can be bounded as

Eξi∼Di
∥∇Fi (w; ξi)−∇f(w)∥2 ≤ σ2,∀w,∀i, (17)

Eξi∼Di ∥∇Fi (w; ξi)∥2 ≤ δ2,∀w,∀i, (18)

where σ and δ are positive constants.

Assumption 3 (Quantization bounded variances). The output
of a q-quantization operator Q(x) is an unbiased estimator
of its input x, and its variance grows with the squared of
L2-norm of its argument, i.e., E[Q(x)] = x and E[||Q(x) −
x||2] ≤ q||x||2, where the expectation E[·] is taken over
the randomness of Q. Here, q could be a function reflecting
compression distortion w.r.t the dimension of the input and the
number of quantization levels.

Basically, Assumption 3 is customary in the analysis of
distributed learning methods with compression [12], [13],
and there are some quantization operators subjecting to the
conditions in the assumption, such as QSGD [14], Stochastic
Quantization [15], [16], etc. Based on the above assumptions,
we have the following lemma on the bounded variances of M-
AirComp, where the power control policy with a transmission
probability ρ is applied for gradient uploading.

Lemma 1 (M-AirComp bounded variances). The output of
the M-AirComp operator Air(X ) with the proposed power
control scheme is an unbiased estimator of its input set X ,i.e.,
E[Air(X )] = y, and the transmission probability ρ affects the
variance of M-AirComp by

Var(Air(X )) = 1

K2
(
1

ρ
− 1)

∑
xk∈X

x2
k +

σ2
z

K2ρ2
. (19)

Proof. Let X be the input set of the M-AirComp operator.
Given the transmission probability ρ of the FL users, the
expected output of M-AirComp is

E[Air(X )] =E

[
1

ρK

[ ∑
xk∈X

xk + n

]]

=
1

ρK

[ ∑
xk∈X

(xkρ+ 0 · (1− ρ)) + E [n]

]
= y,

(20)
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and the mean of the square of Air(X ) is given by

E[(Air(X ))2] (21)

=E

 1

ρ2K2

(∑
xk∈X

xk + n

)2


=E

 1

ρ2K2

 ∑
xk,xk′∈X

xkxk′ + 2
∑
xk∈X

xkn+ n2


=

1

ρ2K2

 ∑
xk,xk′∈X ,k ̸=k′

xkρxk′ρ+
∑
xk∈X

x2
kρ+ σ2

z


=

1

ρ2K2

[
ρ2

(
(
∑
xk∈X

xk)
2 −

∑
xk∈X

x2
k

)
+ ρ

∑
xk∈X

x2
k + σ2

z

]

=
1

K2

[
(
∑
xk∈X

xk)
2 + (

1

ρ
− 1)

∑
xk∈X

x2
k

]
+

σ2
z

K2ρ2
(22)

Thus, the variance is calculated as:

Var(Air(X )) =E[(Air(X ))2]− E[Air2(X )]

=y2 +
1

K2
(
1

ρ
− 1)

∑
xk∈X

x2
k +

σ2
z

K2ρ2
− y2

=
1

K2
(
1

ρ
− 1)

∑
xk∈X

x2
k +

σ2
z

K2ρ2
.

(23)

Theorem 1. For the proposed ESOAFL approach, under the
above assumptions, if learning rates θ and η satisfy

1 ≥ L2η2H2 +HLθη
q(2− ρ) +Kρ

Kρ
, (24)

the convergence rate after R communication rounds can be
bounded as:

1

R

R−1∑
r=0

∥∇fr∥22 ≤
2(f(w0)− f(w∗)

ηθHR
+

ηθL

K

(ρ+ q)

ρ
σ2

+ η2L2Hσ2 +
θηL

HK2ρ2
σ2
z ,

(25)

where q is the gradient quantization precision, ρ is the M-
AirComp transmission probability, H is the local computing
iterations, and f(w∗) is the minimum value of the loss.

Proof. Please refer to the Appendix. A for the proof.

The above Theorem 1 is derived based on the L-smoothness
gradient assumption on global objective [12]. After expanding
the inequality of the global objective, we first bound the inner
product between the stochastic gradient and full batch gradient,
while we can also bound the distance between the global
model and the local model. Further, we bound the updated gra-
dients with M-AirComp and quantization operators. Finally, by
integrating the derived results above, we finish the convergence
analysis of the ESOAFL algorithm.

Corollary 1. To achieve the linear speedup, we need
to have θη = O

( √
K√
RH

)
. If we further choose θη =

O
(

1
L

√
Kρ

RH(ρ+q)

)
, the convergence rate can be represented

as:

1

R

R−1∑
r=0

∥∇fr∥22 ≤
2L(f(w0)− f(w∗)

√
(ρ+ q)√

KRHρ
+ (26)

√
ρ+ q√
KRHρ

σ2 +
K

Rθ2
σ2 +

√
1

K3RH3(ρ+ q)ρ3
σ2
z

(a)
= O

( √
ρ+ q√
KRHρ

(2L(f(w0)− f(w∗) + σ2)) +
K

Rθ2
σ2

)
(b)
= O

(
χ√

KRH

)
+O

(
K

R

)
,

where (a) is due to the fact that O(
√

1
K3R ) decays faster than

O(
√

1
KR ), and we replace

√
ρ+q
ρ by χ in (b).

We note that, for the ESOAFL without probabilistic trans-
mission, i.e., ρ = 1, the bound in Eq. (26) matches the best-
known rate given by [12] with a tight convergence analysis.
This implies that our ESOAFL will retain the same linear
speedup property as its counterpart without probabilistic trans-
mission and M-AirComp operation. Based on the convergence
analysis, we further give the following corollary on the com-
munication complexity, i.e., the number of communication
rounds required for achieving convergence, of our ESOAFL
algorithm.

Corollary 2. From the Corollary 1, the required maximum
number of communications for achieving the ϵ target training
loss, i.e., satisfying ϵ = 1

R

∑R−1
r=0 ∥∇fr∥22, is given by

R = O

(
2ϵσ2HK2 + χ2(δ + σ2)2θ2

2ϵ2θ2HK

)
(27)

+O

(
+χ(δ + σ2)θ

√
4ϵσ2HK2 + χ2(δ + σ2)2θ2

2ϵ2θ2HK

)

= O (K) +O

(
χ2

HK

)
+O

(
χ√
H

)
, (28)

where χ =
√

ρ+q
ρ and δ = 2L(f(w0)− f(w∗)).

D. Overall Energy Minimization Reformulation and Solution

With the above models, we calculate the total energy
consumed by the participating mobile devices during the entire
training process as:

Θ(ρ,H) = R× (Ecomm +HEcomp)

=

(
A0(ρ+ q)

ρH
+

B0
√
ρ+ q√
ρH

+ C0

)
·
(
ϱλρ2 ln(1− 1

ln ρ
)T comm +HEcomp

)
,

(29)

where A0, B0, and C0 are constants used to approximate the
big-O notion in Eq. (27). From the above formula, we observe
that a larger H lead to the reduced number of communication
rounds R (“talking”), but increases the computational energy
consumption per round (“working”). Also, adjusting ρ affects
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Algorithm 2 JCP Control Algorithm
Initialization: ξ = 10−5, ι = 10−5, γ0 ∈ (0, 1], κ = 0.
Input: Parameters pmax

b , Hmin and Hmax; Value access to
function Θ(·).

1: repeat
2: Solve (34) and set the optimal value as ϕ∗(ϕκ)
3: Set ϕκ+1 = ϕκ + γ0(ϕ∗(ϕκ)− ϕκ)
4: Set κ = κ+ 1 and γκ = γκ−1(1− ξγκ−1)
5: until ||ϕκ − ϕκ−1||22 ≤ ι
6: Round the current H to the nearest integer in H
7: return The current solutions of ρ and H .

the required communication rounds and the communication
energy consumption in each round. Thus, it is necessary
to optimize H and ρ to balance “working” and “talking”
for minimizing the overall energy consumption. To this end,
we formulate the Joint local Computing and transmission
Probability (JCP) control problem as:

min
ρ,H

(
A0(ρ+ q)

ρH
+

B0
√
ρ+ q√
ρH

+ C0

)
(30a)

·
(
ϱλρ2 ln(1− 1

ln ρ
)T comm +HEcomp

)
(30b)

s.t. 0 < ρ ≤ pmax
b , (30c)

H ∈ H. (30d)

For notational brevity, we define ϕ = {ρ,H} and represent
the objective function as Θ(ϕ) = Θ1(ϕ)×Θ2(ϕ), where

Θ1(ϕ) =
A0(ρ+ q)

ρH
+

B0
√
ρ+ q√
ρH

+ C0, (31)

Θ2(ϕ) = ϱλρ2 ln(1− 1

ln ρ
)T comm +HEcomp. (32)

Noticing the decoupled constraints in (30c-30d), we relax
the constraint in (30d) as Hmin ≤ H ≤ Hmax, where Hmin

and Hmax are the minimum and the maximum integer in
H, respectively. Moreover, we can identify that both function
Θ1(ϕ) and Θ2(ϕ) are positive and convex after calculating the
first and second-order partial derivative of these two functions.
(Please refer to Appendix. B for the detailed derivation.)

Capturing such the “product-of-convexity” property of the
objective function Θ(ϕ), we use the inner convex approxima-
tion method [17] to solve the relaxed JCP control problem by
optimizing a sequence of strongly convex inner approxima-
tions of Θ(ϕ) in the form: given ϕκ

Θ(ϕ;ϕκ) = Θ1(ϕ)Θ2(ϕ
κ) + Θ1(ϕ

κ)Θ2(ϕ), (33)

where ϕκ = {ρκ, Hκ} refers to the intermediate ϕ obtained
in the κ-th iteration. Obviously, the approximated objective
function in (33) is strongly convex with the fixed ϕκ. With
the surrogate function above, we are essentially required
to compute the optimal solutions of the following convex

Fig. 3. M-AirComp based FL testbed.

optimization problem in each iteration, while preserving the
feasibility of the iterates to the original problem in (30).

min
ρ,H

Θ(ϕ;ϕκ) (34a)

s.t. 0 < ρ ≤ pmax
b , (34b)

Hmin ≤ H ≤ Hmax. (34c)

Notice that the problem (34) can be solved by various
commercial solvers, e.g., IBM CPLEX optimizer [18]. The
formal description of the Joint Power and Aggregation Control
Algorithm is presented in Alg. 2. Starting from a feasible
point ϕ0, the method consists in iteratively computing the
solution ϕ∗(ϕκ) to the surrogate problem (34), and then taking
a step from ϕκ towards ϕ∗(ϕκ). Here, instead of using a
constant step-size, we use a diminishing step-size rule, i.e,
γκ = γκ−1(1 − ξγκ−1), as it is more efficient to control the
iteration complexity and the convergence speed in practice
[17]. The process is repeated until it meets the termination
criterion, and the value of H is rounded afterward to ensure
its feasibility, i.e., H ∈ H.

V. PERFORMANCE EVALUATION

A. Implementation of M-AirComp

As shown in Fig. 3, we first set up experiments to elaborate
on the usage of M-AirComp for an FL testbed. The system
consists of one edge server and two edge devices. We let
one RTX-8000 server with one USRP X310 play the role
of the over-the-air FL aggregator. Each FL client consists of
the NVIDIA Jetson TX2 as the computing unit and USRP
N210 as the wireless transmitter. We also use WBX 50-2200
MHz Rx/Tx USRP daughterboards, with up to 200mW output
power. The synchronization is provided by USRP X310 REF
and PPS output ports through cable connection. In the end,
all the USRPs are connected to an internet switch. We run
MATLAB codes from the Communication Toolbox Support
Package for USRP Radio to control the transmitting and
receiving in different sessions on the RTX-8000 server.

We first verify the feasibility of M-AirComp by the in-lab
experiments, where two edge devices transmit QAM sym-
bols with quantization, e.g., 16 QAM for 4-bit quantization.
From the constellation in Fig. 4, the receiving symbol set is
expanded into a constellation for higher-order modulations,
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Fig. 4. Constellation diagram of M-AirComp demo (left: transmitter; right:
receiver).

which explains the addition carried by the over-the-air compu-
tation from the communication point of view. The aggregated
symbol will be further decoded as a quantized model update,
with a certain probability of bit error with regards to the signal-
to-noise ratio (SNR).

B. Some Observations of the ESOAFL

As we have discussed in Sec. II-C, AirComp can dra-
matically improve the spectrum efficiency in the FL training
process. Particularly, our ESOAFL scheme has great potential
to retain the training performance in the case of many partic-
ipating devices, even if the communication environment (i.e.,
channel condition) is extremely poor. In Fig. 5, we consider
a severe communication environment with SNR = 5dB over
different number of FL participants, i.e., K = 10, 20, and 30,
and train the ResNet-20 model with the CIFAR-10 dataset.
Here, we partition the dataset into several sub-datasets, where
one sub-dataset is for one FL participant. As a result, the
size of the local dataset decreases as the number of partic-
ipants K grows. This results in the degrading performance
of FedAvg with increasing K. Unlike such the monotone
impact in FedAvg, the impacts of K on the performance
of ESOAFL could be more complicated. With the increasing
number of participants, the variance of AirComp is decreasing,
as indicated in Eq. (23), which helps improve the performance
of our ESOAFL. This can be validated by the shrinking gap
between the ESOAFL scheme and its ideal case (i.e., FedAvg
without channel noise) as the number of devices grows in Fig.
5. Especially with a large set of participants (e.g., K = 30),
the performance of ESOAFL is very close to that of FedAvg,
which also implies that our ESOAFL scheme has strong ability
to resist on the poor channel condition.

Recall that the parameters A0, B0, and C0 exist in the JCP
control problem, which are related to the specific learning
model and dataset. Here, we use a sampling-based method to
estimate the values of the constants A0, B0, and C0, where we
empirically sample different combinations (ρ,H) and use the
derived convergence bound in Eq. (27) to infer their values.
In specific, we repeatedly train a ResNet-20 model on the
CIFAR-10 dataset using varying local computing iterations H
and transmission probabilities ρ, where we set a fixed target
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Fig. 5. Training performance under poor channel conditions.

Fig. 6. Communication rounds with varying pb and H.

training loss and record the number of communication rounds
correspondingly. With these experimental results, we use the
non-linear least squares curve fitting algorithm [19] to estimate
the values of A0, B0, and C0 in the JCP control problem.
Fig. 6 shows the fitting results. We observe that, with the
increase of local computing iterations H and transmission
probability ρ, the number of required communication rounds
is decreasing, but this effect is gradually weakened. At the
same time, the computing energy consumption of each round
increases linearly with the incremental of local computing
iterations H . Thus, the trade-off between local computing
and wireless communications has to be considered to reduce
the overall energy consumption, where local iterations H
and transmission probability ρ are necessary to carefully
determine.

C. Spectrum and Energy Efficiency of the ESOAFL

After the parameter estimation, we implement the proposed
JCP control scheme to find the optimal local computing
iterations H and transmission probability ρ. Here, we use
two different image classification datasets, i.e., MNIST and
CIFAR-10, to verify the effectiveness of our proposed ap-
proach, both of which consist of 50000 training images and
10000 test images in 10 classes. In particular, the MNIST
dataset contains 28x28 black and white images of handwritten
digits, while the CIFAR-10 dataset is rather complicated that
contains 32x32 color images of animals and vehicles. A LeNet
model and a ResNet-20 model are trained on the two datasets
respectively, where the former is light and the latter has a
more complex structure to fit the dataset. We set the batch

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3287549

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Louisiana State University. Downloaded on August 17,2023 at 17:46:52 UTC from IEEE Xplore.  Restrictions apply. 



10

10
1

10
2

10
3

10
4

Comm. Resources

0

0.5

1

1.5

2

T
ra

in
in

g
 L

o
s
s

FedAvg

FedPAQ

OBDA-ADV

ESOAFL-OPT

ESOAFL-MAX

(a) Training loss vs. comm. resources

10
0

10
1

10
2

10
3

Energy Consumption (J)

40

50

60

70

80

90

100

T
ra

in
in

g
 A

c
c
.

FedAvg

FedPAQ

OBDA-ADV

ESOAFL-OPT

ESOAFL-MAX

(b) Training acc. vs. energy cons.

Fig. 7. Training performance of LeNet on MNIST dataset.

size as 128 for ResNet-20 and 32 for LeNet. In each round
of FL, we set K = 10 participating devices to execute H
iterations of stochastic gradient descent (SGD) in parallel, and
the maximum transmission probability ρmax is set to 0.77
according to the simulated communication environment and
the power constraint. The initial learning rate is η = 0.2 with
a fixed decay rate. Particularly, we compare our ESOAFL-OPT
(i.e., ESOAFL with optimal JCP control) with the following
schemes:

• FedAvg [1]: FL without AirComp and gradient quantiza-
tion, where ideal noise-free transmission is supposed.

• FedPAQ [20]: FL with gradient quantization, where the
users transmit the quantized model updates in every
communication round.

• OBDA-ADV [21]: A modified version of the OBDA
(one-bit digital AirComp), where we improve the original
scheme by ignoring the quantization at the receiver to
preserve the learning precision.

• ESOAFL-MAX: the proposed ESOAFL scheme without
the transmission control, where we adopt the maximum
transmission probability ρmax to transmit the model up-
dates.

We assume the same communication bandwidth for all the
schemes. We consider the Nvidia TX2 as FL device and
utilize the Jtop [22] tool to measure the computing energy.
It measures that the LeNet model consumes 0.03J and the
ResNet model consumes 0.5J for one training iteration. For
example, training the ResNet model for one iteration takes
130ms, and the GPU power is nearly 4W. We assume the
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Fig. 8. Training performance of ResNet-20 on CIFAR-10 dataset.

AirComp is deployed in the commercial LTE system for wire-
less transmissions. For all the schemes, we set the maximum
transmit power as 0.2W and set the average SNR as 15dB for
the FL participants, whose channel quality can be reflected by
the CQI (Channel Quality Indicator) category 11. In this case,
the modulation scheme, code rate, bits per resource element
are 64QAM, 0.8525, 5.115, respectively.

Fig. 7(a) and Fig. 7(b) show the performance of training a
LeNet model on the MNIST dataset. Here, we set the target
training loss ϵ as 0.07 and assume the data samples are inde-
pendent and identically distributed (IID). The local computing
iteration and transmission probability used in ESOAFL-OPT
are with the values of H = 3 and ρ = 0.29 respectively,
which are obtained by performing the JCP control algorithm
in Alg. 2. Here, we integrate the local SGD method (i.e., taking
several training steps among the sequential communication
rounds) into OBDA-ADV scheme for a fair comparison. Let
the spectrum resource consumed in each round of ESOAFL
be a unit communication resource. We set the gradient quan-
tization level as 4-bit in ESOAFL and FedPAQ. Fig. 7(a)
illustrates the communication resources consumption during
the training procedure, and we can obviously find that the
proposed ESOAFL significantly improves the spectrum effi-
ciency compared with FedAvg and FedPAQ. This is because
that the FL devices in FedAvg and FedPAQ cannot take the
concurrent transmission with the same bandwidth as ESOAFL
does. Besides, ESOAFL allows each pair of gradients to be
transmitted orthogonally using in-phase (I) and quadrature
(Q) channels simultaneously, while FedAvg and FedPAQ only
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TABLE II
PERFORMANCE COMPARISON UNDER DIFFERENT LEARNING SETTINGS (RESNET20 ON CIFAR-10)

IID Non-IID: ς = 0.3 Non-IID: ς = 0.5 Non-IID: ς = 0.8
Comm. Energy Acc. Comm. Energy Acc. Comm. Energy Acc. Comm. Energy Acc.

K=10
B=128
H=10

FedAvg 35030 12379 88.1% 37820 13365 87.9% 42470 15008 85.1% 53010 18951 68.4%
FedPAQ 16320 7011 88.1% 17632 7550 87.4% 22080 9471 85.1% 27040 11600 68.6%
ESOAFL 656 4323 87.4% 674 4590 87.1% 693 4692 84.8% 861 5848 68.1%

K=100
B=32
H=5

FedAvg 350300 9977 87.7% 418500 11920 86.7% 461900 13156 81.0% 492900 14039 63.1%
FedPAQ 187200 5544 87.3% 214400 6349 86.6% 238400 7060 81.0% 254400 7535 58.9%
ESOAFL 600 1530 87.1% 675 1721 86.4% 740 1887 81.0% 785 785 53.2%

allow each resource element to carry several bits of a gradient
for fitting in with the LTE protocol. Since OBDA-ADV applies
one-bit digital AirComp, the precision of the model updates
can be seriously scarified in every communication round. Due
to such information distortion, it is required to take more
communication rounds to achieve a specific accuracy, and
thereby consumes more communication resources than our
high-precision AirComp FL scheme during training, as shown
in Fig. 7(a). Fig. 7(b) further illustrates the behaviours of
energy consumption during FL. The results show that our
ESOAFL scheme consumes the least energy among all the
schemes. Specifically, when achieving the same target training
loss, the energy consumption of FL devices in ESOAFL-
OPT is twice and three times lower than that of FedPAQ and
OBDA-ADV, respectively. This is because the energy efficient
power control policy and the digital modulation scheme in
the M-AirComp design save both the transmit power and
time. Moreover, since the optimized transmission probabil-
ity is much lower than the maximum value, our ESOAFL-
OPT approach only consumes nearly half of the ESOAFL-
MAX approach’s energy, which demonstrates the necessity
of the JCP control. Note that the low-precision OBDA-ADV
approach cannot reach the target training loss we set, and thus
we consider the target loss ϵ = 0.12 especially for the OBDA-
ADV approach to present the results.

Fig. 8(a) and Fig. 8(b) demonstrate the performance com-
parison of all the schemes using ResNet-20 model on the
CIFAR-10 dataset. We set the target training loss ϵ as 0.12, and
obtain the optimal control strategies H = 11 and ρ = 0.51 for
ESOAFL-OPT. As expected, the proposed ESOAFL approach
dramatically improves the spectrum efficiency and reduces
the energy consumption of devices. Particularly, ESOAFL-
OPT saves hundreds of times of communication resources
compared with FedAvg and FedPAQ in this case. It also saves
more than 8× of communication resources compared with the
OBDA method. Besides, our proposed ESOAFL-OPT scheme
saves nearly one-third and two-thirds of energy consumption
than FedPAQ and FedAvg schemes. Notice that the OBDA-
ADV scheme has relatively poor convergence performance
compared with other approaches due to the high precision
requirement of the complex ResNet-20 model.

We further show the scalability of the ESOAFL scheme
with more learning settings. Here, we consider different data
distributions in the content of different levels of non-IID data.
Let ς ∈ [0, 1] denotes the non-IID level [23]. For example,
ς = 0.3 indicates that 30% of the data belong to one label
and the remaining 70% data belong to others. Following this

setting, we generate the local dataset for each user by drawing
the data from the whole dataset with specific labels, instead
of evenly partition the dataset with all the labels. We ignore
the OBDA-ADV scheme since its performance is not good
in non-IID data settings. From Table. II, we can observe
that training with non-IID data incurs a larger energy and
communication resources consumption to converge. Despite
all this, our ESOAFL, compared with FedAvg and FedPAQ,
achieves the indistinguishable testing accuracy at all non-
IID levels while saving communication resources and overall
energy consumption. We also conducted the simulations with
K = 100 participants, obtaining the similar observations.
Here, compared with K = 10 participants settings, we put
less computing loads (B = 32, H = 5) in each commu-
nication round of the K = 100 setting, thus causing more
communication loads. Therefore, the communication resources
consumption of FedAvg and FedPAQ at K = 100 increases
significantly compared with the scenario of K = 10. Benefit-
ing from concurrent transmission, ESOAFL does not introduce
extra communication resource consumption as K increases,
revealing its significant potentials for involving massive FL
participants.

VI. RELATED WORKS

Much attention has recently been paid to improve the
energy efficiency of wireless FL over mobile devices via
integrating various advanced techniques [24]. For saving the
energy consumed for communication, gradient sparsification
[25]–[27] and gradient quantization [14], [15] techniques are
used to compress the model updates and thereby reduce the
transmission load in every FL round. In [28], [29], momentum
GD/SGD methods are adopted to accelerate the convergence
where the involved communications and energy consumption
during training can be reduced accordingly. For saving the
energy consumed for local training, some researchers propose
to quantize the model parameters into low bit-width at edge
devices to facilitate computationally-efficient on-device train-
ing [30], [31]. Despite their benefits in improve the energy
efficiency of FL, these methods are mainly considered from
the perspective of learning algorithms and widely ignore the
wireless communication environments, especially with the
physical-layer aspects of communication [32].

By exploiting the waveform superposition property of the
wireless medium [33], some pioneering works propose the
AirComp FL to enable a large number of simultaneous local
model uploading for improving the spectrum efficiency during
FL [34]. Cao et al. in [35], and Amiri and Gündüz in [36] apply
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AirComp to mitigate the communication bottleneck when a
large number of participants aggregate the data together, where
power allocation schemes are derived to satisfy the mean
square error requirements. The authors in [5], [6] propose a
joint device selection and communication scheme to improve
the learning performance for AirComp FL. Some works further
utilize the reconfigurable intelligent surface (RIS) technology
to mitigate the communication bottleneck and relieve the
straggler issue in FL by reconfiguring the wireless propagation
environment [37]–[39]. All these works take analogy modula-
tion schemes for wireless transmission, which are difficult to
be implemented on commercial devices. In addition, the con-
vergence analysis for the whole FL training procedure is rarely
discussed in existing works. Noticing the limitations above,
Zhu et al. [21] applies the 1-bit digital modulation and derives
the convergence analysis accordingly. However, the 1-bit based
scheme could seriously scarify the precision, and the energy
consumption issue is overlooked in designing the scheme.
Different from the existing approaches, our design targets at
facilitating the general multi-bit digital modulation scheme,
where a convergence-guaranteed FL scheme integrating both
the AirComp and the gradient quantization is proposed to
improve the energy and spectrum efficiency simultaneously.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed the ESOAFL scheme for energy
and spectrum efficient FL over mobile devices, where M-
AirComp was applied for model updates transmission in
a joint compute-and-communicate manner. A high-precision
digital modulation scheme with multi-bit gradient quantization
was designed for the participating devices to upload their
model updates during FL. With the theoretical convergence
analysis of the modified FL algorithm, we further developed
a joint local computing and transmission probability control
approach aiming to minimize the overall energy consumed by
all devices. Extensive simulations were conducted to verify our
theoretical analysis, and the results showed that the ESOAFL
scheme effectively improves the spectrum efficiency with the
learning precision guarantee. Besides, it also saved at least half
of energy consumption compared with other FL schemes. We
hope our analysis will promote future endeavors in improving
the energy and spectrum efficiency of FL. For example,
non-orthogonal multiple access and reconfigurable intelligent
surface techniques can be integrated into an M-AirComp FL
framework, which may improve the FL performance when fac-
ing massive connectivity and unfavorable propagation channel.
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APPENDIX

A. Proof of Theorem 1

We consider a non-convex FL model setting. From the L-
smoothness gradient assumption on global objective f , we
have

E
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where we take the expectation over the sampling and opera-
tions.

Next, we give three important lemmas where the first two
are borrowed from [12] and the last one is proved in the
following.

Lemma 2. The inner product between the stochastic gradient
∇F r

Q and full batch gradient ∇fr can be bounded by
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Lemma 3. Under Assumption 2, the distance between the
global model and the local model at r-th communication round
can be bounded by
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Lemma 4. The last term in (35) can be calculated as
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Proof. Applying Lemma 1 into the left-hand-side of(38), we
get (39). Then we complete the proof of Lemma 4

From Assumption 2, we have Var(∇F r
k ) ≤ Hσ2. Further,
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Applying Lemma 2, 3, and 4 together into (35), we get (41).
By taking 1− L2η2H2 −HLθη q(2−ρ)+Kρ

Kρ ≥ 0, we have
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Recursively applying the above inequality from r = 0 to
r = R− 1 yields (43).

Until now we complete the proof of Theorem 1.
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B. Proof of the convexity of Θ1 and Θ2

The second-order partial derivative of functions Θ1 and Θ2

can be calculated as:
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∂2Θ1

∂H∂ρ
=

1

4

q(4A0

√
ρ+ q

√
ρH +B0ρH)

ρ2H2
√
ρ+ q

√
ρH

(48)

∂2Θ2

∂ρ2
= λ

ln2 ρ− 3 ln ρ+ 1

ρ ln2 ρ(ln ρ− 1)2
T comm (49)

∂2Θ2

∂H2
=

∂2Θ2

∂H∂ρ
=

∂2Θ2

∂ρ∂H
= 0 (50)

With the equations above, we can easily conclude that the
Hessian matrix of both the functions Θ1 and Θ2 are positive
semi-definite. It implies that Θ1 and Θ2 are convex. This
completes the proof.
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